Neuroprotective Potential and Underlying Pharmacological Mechanism of Carvacrol for Alzheimer's and Parkinson's Diseases.

Curr Neuropharmacol

Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates.

Published: May 2023

The phytochemicals have antioxidant properties to counter the deleterious effects of oxidative stress in the central nervous system and can be a promising drug candidate for neurodegenerative diseases. Among various phytochemicals, constituents of spice origin have recently received special attention for neurodegenerative diseases owing to their health benefits, therapeutic potential, edible nature, and dietary accessibility and availability. Carvacrol, a phenolic monoterpenoid, has garnered attention in treating and managing various human diseases. It possesses diverse pharmacological effects, including antioxidant, anti-inflammatory, antimicrobial and anticancer. Alzheimer's disease (AD) and Parkinson's disease (PD) are major public health concerns that place a significant financial burden on healthcare systems worldwide. The global burden of these diseases is expected to increase in the next few decades owing to increasing life expectancies. Currently, there is no cure for neurodegenerative diseases, such as AD and PD, and the available drugs only give symptomatic relief. For a long time, oxidative stress has been recognized as a primary contributor to neurodegeneration. Carvacrol enhances memory and cognition by modulating the effects of oxidative stress, inflammation, and Aβ25-35- induced neurotoxicity in AD. Moreover, it also reduces the production of reactive oxygen species and proinflammatory cytokine levels in PD, which further prevents the loss of dopaminergic neurons in the substantia nigra and improves motor functions. This review highlights carvacrol's potential antioxidant and anti-inflammatory properties in managing and treating AD and PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324337PMC
http://dx.doi.org/10.2174/1570159X21666221223120251DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
neurodegenerative diseases
12
diseases phytochemicals
8
effects oxidative
8
antioxidant anti-inflammatory
8
diseases
6
neuroprotective potential
4
potential underlying
4
underlying pharmacological
4
pharmacological mechanism
4

Similar Publications

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges.

J Nanobiotechnology

January 2025

Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.

Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever.

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

The prospective therapeutic benefits of sesamol: neuroprotection in neurological diseases.

Nutr Neurosci

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China.

Oxidative stress is recognized as a critical contributor to the advancement of neurological diseases, thereby rendering the alleviation of oxidative stress a pivotal strategy in the therapeutic management of such conditions. Sesamol, the principal constituent of sesame oil, has been the subject of extensive research due to its significant antioxidant properties, especially its ability to effectively counteract oxidative stress within the central nervous system and confer neuroprotection. While sesamol demonstrates potential in the treatment and prevention of neurological diseases, its modulation of oxidative stress is complex and not yet fully understood.

View Article and Find Full Text PDF

Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.

Biol Trace Elem Res

January 2025

Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.

The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!