Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is currently limited research on the structure-property relationship of reduction stimuli-responsive polymeric crosslinked micelles using mesoscopic simulations. Herein, dissipative particle dynamics (DPD) simulations were used to simulate the self-assembly process of the blank non-crosslinked micelle, the structure and doxorubicin (DOX) distribution of diselenide crosslinked micelle with different crosslinker contents (CCs) based on the nearest-neighbor bonding principle. The results revealed that the formation of a three-layer spherical micelle and the loaded DOX mainly distributed in the polycaprolactone (PCL) core and hydroxyethyl methacrylate (HEMA) mesosphere. The larger the dosage of DOX, the more DOX encapsulated, but the encapsulation of DOX in the hydrophobic domain would reach saturation when the dosage increased to 6.0 %. In micelles with lower CCs or crosslinking levels (CLs), DOX entered the middle layer and the inner core faster. Then, based on the nearest media-bead bond breaking principle and subsequently DPD simulation, the effects of different CCs on the micelle structure and DOX release properties were investigated. Low CC could cause fast drug release. With the increase of CCs, the micelle showed a slower DOX release trend. The multilayer crosslinked network system also affected the DOX release rate. Hence, this work can provide some mesoscale guidance for the structural design and structure-property relationship of stimuli-responsive reversible crosslinked micelles for drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2022.12.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!