Electroplating sludge was a hazardous waste comprised of heavy metals and other Fe/Al/Ca/Si impurities, and produced massively in surface treatment industry. In the past, it was commonly purified via hydrometallurgy, chlorination and reduction calcination routes, but also blended as additive in rotary kiln, to stabilize the heavy metals in geopolymer. Herein, an alternative strategy was developed to treat a real electroplating sludge for recycling magnetic Zn-rich spinel and stabilizing Zn in calcium metasilicate glass via a facile pyrometallurgy route with the blending of emulsion mud and coal ash. The sludge contained 35.6% Zn and 0.54% Cr and then was blended with 50% emulsion mud. After calcination at 1200 °C, the product was highly dispersed, whilst octahedral ZnAlFeO spinel with Zn content of 40.0% were formed and separated by using magnet, in accordance with the recycling efficiency of 51.2% Zn from the electroplating sludge. But after calcination at 1400 °C, the gypsum in emulsion mud was decomposed as CaO and accelerated the dissolution of Si-bearing substance as calcium metasilicate glass for covering ZnAlFeO spinel, resulting in the Zn leaching of 1568 mg/L. By adding 50% Si-rich coal ash in the calcination system, more calcium metasilicate glass were generated, and then the Zn concentration in the toxic leaching test was only 12.09 mg/L. During the calcination, Cr showed similar performance to Al/Fe and involved in the spinel formation. This provided a new route to recycle Zn from Zn-rich electroplating sludge and to solidify heavy metals via calcium metasilicate glass route.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117101 | DOI Listing |
Waste Manag
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
January 2025
Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam.
This study explored the potential of electroplating sludge (ESs) as a novel and effective photocatalyst for the photodegradation of ciprofloxacin in aqueous solutions. The characterization of the ESs was evaluated using sophisticated techniques, such as XRD, SEM, TEM, EDX, FTIR, and BET. ESs-derived photocatalyst materials were found to primarily consist of various metal oxides (Ni-O, Cu-O), which can absorb ultraviolet or visible light.
View Article and Find Full Text PDFACS ES T Water
December 2024
Faculty of Applied Natural Sciences, Technische Hochschule Köln, 51379 Leverkusen, Germany.
Electroplating is a widely used technology for anticorrosion materials and decorative coatings. In view of the transition to a circular economy, the current electroplating wastewater treatment disposing of heavy metal sludge and wastewater severely lacks sustainability. Authors recently reported the successful recycling of electroplating agents using hybrid semibatch/batch reverse osmosis technology (hybrid RO).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Fibrenamics Association, University of Minho, 4800-058 Guimarães, Portugal.
Plastic waste, especially discarded fishing nets, and electroplating sludges pose significant environmental challenges, impacting marine ecosystems and contributing to pollution. In alga cultivation, invasive microorganisms often hinder growth, necessitating strategies to combat these issues. This study aimed to develop recycled substrates for alga cultivation by repurposing fishing nets and enhancing their surfaces with antibacterial properties using copper oxide (CuO).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China.
The electroplating industry is an important source of per- and polyfluoroalkyl substances (PFAS) contamination, but there is a lack of comprehensive studies on the occurrence, transport, and removal of PFAS in electroplating parks. In this study, we investigated typical electroplating parks in China and conducted the first full-scale removal of PFAS from chromium-plating wastewater using pore-enlarged granular activated carbon (GAC) and hydrophobic anion exchange resin (AER). The results showed that 6:2 fluorotelomer sulfonate (6:2 FTS) gradually replaced perfluorooctanesulfonate (PFOS) in China's electroplating industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!