A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Levofloxacin loaded clove oil nanoscale emulgel promotes wound healing in Pseudomonas aeruginosa biofilm infected burn wound in mice. | LitMetric

Levofloxacin loaded clove oil nanoscale emulgel promotes wound healing in Pseudomonas aeruginosa biofilm infected burn wound in mice.

Colloids Surf B Biointerfaces

Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India. Electronic address:

Published: February 2023

Owing to their tolerance to antibiotics, bacterial biofilms continue to pose a threat to mankind and are leading cause for non-healing of burn wounds. Within the biofilm matrix, antibiotics become functionally inactive due to restricted penetration and enzymatic degradation leading to rise of antimicrobial resistance. The objective of present investigation was to develop and characterize levofloxacin (LFX) loaded clove oil nanoscale emulgel (LFX-NE gel) and evaluate its in vivo therapeutic efficacy in Pseudomonas aeruginosa biofilm infected burn wound in mice. The optimized emulgel was found to possess good texture profile and showed shear thinning behavior. In vitro release study demonstrated complete drug release in 8 h and emulgel was found to be stable for 3 months at 25 °C and 40 °C. In vivo study revealed biofilm dispersal, complete wound closure, re-epithelialization and collagen deposition by LFX-NE gel in comparison to various control groups. LFX-NE gel was able to clear the infection within 7 days of treatment and promote wound healing as well. Therefore, administration of LFX-incorporated NE gel could be a beneficial treatment strategy for P. aeruginosa biofilm-infected burn wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.113113DOI Listing

Publication Analysis

Top Keywords

lfx-ne gel
12
loaded clove
8
clove oil
8
oil nanoscale
8
nanoscale emulgel
8
wound healing
8
pseudomonas aeruginosa
8
aeruginosa biofilm
8
biofilm infected
8
infected burn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!