Avoidance of harmful substances is survival strategy used cross invertebrates and vertebrates. For example, the nematode Caenorhabditis elegans evolves a sufficient avoidance response to pathogenic bacteria. Despite G protein has been found to exert neural plasticity for avoidance behaviours in C. elegans, the function of Gi/o and Gq subunit signalling in experience-dependent aversive behaviour remains unclear. In this study, we show that EGL-30/Gq coupled with EGL-8/UNC-13 regulates aversive behaviour of C. elegans to pathogenic bacterium Pseudomonas aeruginosa PA01 via acetylcholine and its receptor nAChR. Pyocyanin, a toxin secreted from P. aeruginosa, acts as a signal molecule to trigger aversive behaviour. ODR-3 and ODR-7 in AWA and AWC neurons function as upstream of EGL-30 to induce experience-dependent aversive behaviour to P. aeruginosa, respectively. These results suggested that a novel signalling pathway to regulate a behavioural response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.12.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!