Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research reports the effects of pH increase on contaminant mobility in acid mine drainage from the Iberian Pyrite Belt by seawater mixing in the laboratory, simulating the processes occurring in the Estuary of Huelva (SW Iberian Peninsula). Concentrations of Al, Fe, As, Cu and REY in mixing solutions significantly decreased with increasing pH. Schwertmannite precipitation at pH 2.5-4.0 led to the total removal of Fe(III) and As. Subsequently, iron-depleted solutions began to be controlled by precipitation of basaluminite at pH 4.5-6.0, which acted as a sink for Al, Cu and REY. Nevertheless, as the pH rises, schwertmannite becomes unstable and releases back to solution the previously retained As. Moreover, other elements (S, Zn, Cd, Ni and Co) behaved conservatively in mixing solutions with no participation in precipitation processes. Some toxic elements finally end up to the Atlantic Ocean contributing to the total pollutant loads and environmentally threatening the coastal areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2022.114491 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!