A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In silico analysis decodes transthyretin (TTR) binding and thyroid disrupting effects of per- and polyfluoroalkyl substances (PFAS). | LitMetric

In silico analysis decodes transthyretin (TTR) binding and thyroid disrupting effects of per- and polyfluoroalkyl substances (PFAS).

Arch Toxicol

Biology, The Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden.

Published: March 2023

Transthyretin (TTR) is a homo-tetramer protein involved in the transport of thyroid hormone (thyroxine; T4) in the plasma and cerebrospinal fluid. Many pollutants have been shown to bind to TTR, which could be alarming as disruption in the thyroid hormone system can lead to several physiological problems. It is also indicated that the monomerization of tetramer and destabilization of monomer can lead to amyloidogenesis. Many compounds are identified that can bind to tetramer and stabilize the tetramer leading to the inhibition of amyloid fibril formation. Other compounds are known to bind tetramer and induce amyloid fibril formation. Among the pollutants, per- and polyfluoroalkyl substances (PFAS) are known to disrupt the thyroid hormone system. The molecular mechanisms of thyroid hormone disruption could be diverse, as some are known to bind with thyroid hormone receptors, and others can bind to membrane transporters. Binding to TTR could also be one of the important pathways to alter thyroid signaling. However, the molecular interactions that drive thyroid-disrupting effects of long-chain and short-chain PFASs are not comprehensively understood at the molecular level. In this study, using a computational approach, we show that carbon chain length and functional group in PFASs are structural determinants, in which longer carbon chains of PFASs and sulfur-containing PFASs favor stronger interactions with TTR than their shorter-chained counterparts. Interestingly, short-chain PFAS also showed strong binding capacity, and the interaction energy for some was as close to the longer-chain PFAS. This suggests that short-chain PFASs are not completely safe, and their use and build-up in the environment should be carefully regulated. Of note, TTR homologs analysis suggests that thyroid-disrupting effects of PFASs could be most likely translated to TTR-like proteins and other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968702PMC
http://dx.doi.org/10.1007/s00204-022-03434-8DOI Listing

Publication Analysis

Top Keywords

thyroid hormone
20
transthyretin ttr
8
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
substances pfas
8
hormone system
8
bind tetramer
8
amyloid fibril
8
fibril formation
8
thyroid-disrupting effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!