Short-chain fatty acids (SCFAs) are major metabolic products of indigestible polysaccharides in the gut and mediate the function of immune cells to facilitate homeostasis. The immunomodulatory effect of SCFAs has been attributed, at least in part, to the epigenetic modulation of immune cells through the inhibition the nucleus-resident enzyme histone deacetylase (HDAC). Among the downstream effects, SCFAs enhance regulatory T cells (T) over inflammatory T helper (Th) cells, including Th17 cells, which can be pathogenic. Here, we characterize the potential of two common SCFAs-butyrate and pentanoate-in modulating differentiation of T cells in vitro. We show that butyrate but not pentanoate exerts a concentration-dependent effect on T and Th17 differentiation. Increasing the concentration of butyrate suppresses the Th17-associated RORγtt and IL-17 and increases the expression of T-associated FoxP3. To effectively deliver butyrate, encapsulation of butyrate in a liposomal carrier, termed BLIPs, reduced cytotoxicity while maintaining the immunomodulatory effect on T cells. Consistent with these results, butyrate and BLIPs inhibit HDAC and promote a unique chromatin landscape in T cells under conditions that otherwise promote conversion into a pro-inflammatory phenotype. Motif enrichment analysis revealed that butyrate and BLIP-mediated suppression of Th17-associated chromatin accessibility corresponded with a marked decrease in bZIP family transcription factor binding sites. These results support the utility and further evaluation of BLIPs as an immunomodulatory agent for autoimmune disorders that are characterized by chronic inflammation and pathogenic inflammatory T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695156 | PMC |
http://dx.doi.org/10.1007/s13346-022-01284-6 | DOI Listing |
Forensic Sci Int Genet
January 2025
Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA.
Recent developments in single-cell analysis have revolutionized basic research and have garnered the attention of the forensic domain. Though single-cell analysis is not new to forensics, the ways in which these data can be generated and interpreted are. Modern interpretation strategies report likelihood ratios that rely on a model of the world that is a simplification of it.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan. Electronic address:
Extracellular vesicles (EVs) play a key role in cancer development and cellular homeostasis by transferring the biological cargo to recipient cells. Here, we describe steps for screening EV secretion-related genes by combining a microRNA (miRNA) library and ExoScreen, a highly sensitive EV detection technique. We also detail procedures for screening the direct target genes regulated by miRNAs.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Microbiology, Tumor and Cell Biology, Division of Virology and Immunology, Karolinska Institutet, 171 65 Solna, Sweden. Electronic address:
Protective antibodies against HIV-1 require unusually high levels of somatic mutations introduced in germinal centers (GCs). To achieve this, a sequential vaccination approach was proposed. Using HIV-1 antibody knockin mice with fate-mapping genes, we examined if antigen affinity affects the outcome of B cell recall responses.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!