Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cardiac magnetic resonance imaging (CMR) is the gold standard for measuring infarct size (IS). However, this method is expensive and requires a specially trained technologist to administer. We therefore sought to quantify the IS using machine learning (ML) based analysis on clinical features, which is a convenient and cost-effective alternative to CMR.
Methods And Results: We included 315 STEMI patients with CMR examined one week after morbidity in final analysis. After feature selection by XGBoost on fifty-six clinical features, we used five ML algorithms (random forest (RF), light gradient boosting decision machine, deep forest, deep neural network, and stacking) to predict IS with 26 (selected by XGBoost with information gain greater than average level of 56 features) and the top 10 features, during which 5-fold cross-validation were used to train and optimize models. We then evaluated the value of actual and ML-IS for the prediction of adverse remodeling. Our finding indicates that MLs outperform the linear regression in predicting IS. Specifically, the RF with five predictors identified by the exhaustive method performed better than linear regression (LR) with 10 indicators (R of RF: 0.8; LR: 0). The finding also shows that both actual and ML-IS were independently associated with adverse remodeling. ML-IS ≥ 21% was associated with a twofold increase in the risk of LV remodeling (P < 0.01) compared with patients with reference IS (1st tertile).
Conclusion: ML-based methods can predict IS with widely available clinical features, which provide a proof-of-concept tool to quantitatively assess acute phase IS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2022.12.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!