Abuse of carbendazim (CBZ) leaves excessive pesticide residues on agricultural products, which endangers human health because of the residues' high concentrations. Hence, a composite consisting of functionalized carbon nanofibers (f-CNF) with neodymium oxide (NdO) was fabricated to monitor CBZ at trace levels. The NdO/f-CNF composite-modified electrode displays higher electro-oxidation ability towards CBZ than NdO and f-CNF-modified electrodes. The combined unique properties of NdO and f-CNF result in a substantial specific surface area, superior structural stability, and excellent electrocatalytic activity of the composite yielding enhanced sensitivity to detecting CBZ with a detection limit of 4.3 nM. Also, the fabricated sensor electrode can detect CBZ in the linear concentration range of up to 243.0 μM with high selectivity, appropriate reproducibility, and stability. A demonstration of the sensing capability of CBZ in vegetables, water, and soil samples was reported paving the way for its use in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.115140DOI Listing

Publication Analysis

Top Keywords

functionalized carbon
8
vegetables water
8
water soil
8
soil samples
8
cbz
6
rational design
4
ndo
4
design ndo
4
ndo decorated
4
decorated functionalized
4

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Strategic model for integrating biogas a framework for sustainable energy integration in agro-industries.

Sci Rep

December 2024

Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!