AI Article Synopsis

  • Glucocerebrosidase (GCase), an enzyme linked to Parkinson's disease, may have its activity increased by chaperones, which could lead to new treatment options.
  • Researchers used in-silico methods and various spectroscopic techniques to identify compounds that enhance GCase activity, ultimately focusing on a candidate, GC466, which showed promising characteristics for stabilizing the enzyme.
  • GC466 demonstrated effective neuroprotective qualities in laboratory models, suggesting it could be developed as a potential disease-modifying treatment for Parkinson's disease.

Article Abstract

Glucocerebrosidase (GCase), a GBA1 gene-encoded lysosomal enzyme, is a risk factor for Parkinson's disease (PD). Chaperones that increase GCase activity can potentially be disease-modifying agents in PD. To date, none of the registered treatments has demonstrated disease-modifying effects. Thus, chaperones for GCase were identified using in-silico virtual screening, molecular property filtering, and molecular dynamics and validated by circular dichroism, FT-IR, and Raman spectroscopies. In-vitro enzyme kinetics, thermal denaturation assay (TDA), and cell-line model were used to test their potential for GCase In-silico investigation revealed four compounds as candidate chaperones with adequate brain penetrability and binding energy (BE). Of them, GC466 showed ideal chaperoning characteristics, including potent BE -8.92 ± 0.68 Kcal/mol and binding affinity (K) 0.64 ± 0.12 μM against rGCase (Asp146, Phe265, and His329 residues) at pH 7.0 than at 4.5 (BE: -5.06 Kcal/mol, K: not found). Spectroscopic results confirmed the stability of GCase by GC466. TDA determined its chaperoning behavior, signified by improved rGCase thermal stabilization with stabilization ratio of 10.20 at 10 μM. In addition, it demonstrated GCase restorative, neurorestorative, and ROS scavenging activity in 6-OHDA treated cell-line model. Therefore, the present study may offer a novel chaperone with the potential to be a disease-modifying agent for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.217DOI Listing

Publication Analysis

Top Keywords

chaperone potential
8
parkinson's disease
8
virtual screening
8
screening molecular
8
molecular dynamics
8
cell-line model
8
gcase
6
identification novel
4
novel glucocerebrosidase
4
glucocerebrosidase chaperone
4

Similar Publications

Tracking Chaperone-Mediated Autophagy Flux with a pH-Resistant Fluorescent Reporter.

Int J Mol Sci

December 2024

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.

Chaperone-mediated autophagy (CMA) is a selective autophagic pathway responsible for degrading cytoplasmic proteins within lysosomes. Monitoring CMA flux is essential for understanding its functions and molecular mechanisms but remains technically complex and challenging. In this study, we developed a pH-resistant probe, KFERQ-Gamillus, by screening various green fluorescent proteins.

View Article and Find Full Text PDF

Developing Allosteric Chaperones for -Associated Disorders-An Integrated Computational and Experimental Approach.

Int J Mol Sci

December 2024

Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain.

Mutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.

View Article and Find Full Text PDF

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!