In this study, chitosan-induced self-assembly of montmorillonite nanosheets (MMTNS) along the end-face to form the layered and porous structured composite with high adsorption capacity towards MB dye wastewater was investigated. The self-assembly process was driven by the hydrogen-bond interaction among -OH groups distributed along the end-face of MMTNS and -NH groups on chitosan (CS) chain, which finally formed the infinite two-dimensional lamellae. This technology remained the exposed adsorption sites on MMTNS surface, and solved the separation issue of spent MMTNS from water, making MMTNS/CS an excellent adsorption material for macromolecular MB dye. The maximum adsorption capacity of MMTNS/CS towards MB reached 243 mg/g, which was achieved via the Na- exchange, hydrogen-bond and n-π stacking interactions with MB molecules. This work aimed at breaking through the bottleneck of small adsorption capacity of traditional MMT adsorbents, solving the problem of solid-liquid separation of nanosheets, and effectively reducing the adsorption cost, which might guide an important direction for adsorption material design and development in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.206DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
12
chitosan-induced self-assembly
8
self-assembly montmorillonite
8
montmorillonite nanosheets
8
adsorption material
8
adsorption
7
nanosheets end-face
4
end-face methylene
4
methylene blue
4
blue removal
4

Similar Publications

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Effects of enzymolysis by seven proteases (Alcalase, Bromelain, Flavourzyme, Papain, Pepsin, Protamex, and Trypsin) with distinct cleavage specificities on the emulsification performance of hempseed protein (HPI) and its correlation with the structural and interfacial characteristics were explored in this study. Upon enzymolysis, a remarkable decrease in α-helix and β-turn was observed in resultant hydrolysates (HPH), accompanied by a rise in β-sheet and random coil, notably by Alcalase, Bromelain, Papain, and Trypsin. Overall, proteolysis led to noticeable reductions in surface hydrophobicity and total sulfhydryls as well as a redshift in intrinsic fluorescence, with Papain showing the most pronounced effects, possibly due to its higher hydrolysis degree (4.

View Article and Find Full Text PDF

Glutaric anhydride esterification promotes wheat starch/glutein composite gel interaction: Formation, characterization, and oleogel applications.

Food Res Int

February 2025

Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:

This study constructed a composite system with different ratios (100:0, 95:5, 90:10, and 80:20) of glutein compounded with various esterified starch (3 % and 6 %). The results demonstrated that the esterification process enhanced the viscosity of the starch gel system. Furthermore, the optimal esterification level (3 %) facilitated the formation of a dense composite gel network, as observed through microstructure observation.

View Article and Find Full Text PDF

Enhanced bioaccumulation and toxicity of Fenpropathrin by polystyrene nano(micro)plastics in the model insect, silkworm (Bombyx mori).

J Nanobiotechnology

January 2025

Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China.

Background: Nano(micro)plastics (NMPs) and agrochemicals are ubiquitous pollutants. The small size and physicochemical properties of NMPs make them potential carriers for pollutants, affecting their bioavailability and impact on living organisms. However, little is known about their interactions in terrestrial ecosystems.

View Article and Find Full Text PDF

Imidazole Cationic-Bridged Pillar[5]arene Polymer as a Recycle Adsorbent for Iodine Capture.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!