The use of non-destructive forensic methods for cocaine identification is of outstanding importance, given the amount of samples seized. Techniques such as ATR-FTIR, Raman, and NIR spectroscopy have become alternatives to circumvent this problem, as they allow fast, cheap analysis, and enable the reanalysis of samples. When combined with chemometrics, these spectroscopic methods can be used to determine and quantify cocaine samples, meaning that the limitations of existing techniques can be overcome. This review article covers spectroscopic techniques for identifying cocaine in different forms and matrices, such as food and textiles, which are materials used for smuggling. The chemometric identification of cocaine in oral fluid and water is also discussed. In addition, vibrational spectroscopy techniques using portable equipment are described. This work seeks to evaluate the main chemometric applications of spectroscopic data and to find new perspectives on the identification of cocaine using chemometrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2022.111540 | DOI Listing |
JMIR Form Res
January 2025
Center on Substance Use and Health, San Francisco Department of Public Health, San Francisco, CA, United States.
Background: Despite increasing fatal stimulant poisoning in the United States, little is understood about the mechanism of death. The psychological autopsy (PA) has long been used to distinguish the manner of death in equivocal cases, including opioid overdose, but has not been used to explicitly explore stimulant mortality.
Objective: We aimed to develop and implement a large PA study to identify antecedents of fatal stimulant poisoning, seeking to maximize data gathering and ethical interactions during the collateral interviews.
ACS Chem Neurosci
January 2025
School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.
Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention.
View Article and Find Full Text PDFDis Mon
January 2025
Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
The subject of substance use disorders in the pediatric population remains a disturbing conundrum for clinicians, researchers and society in general. Many of our youth are at risk of being damaged and even killed by drug addictions that result from the collision of rapidly developing as well as vulnerable central nervous systems encountering the current global drug addiction crisis. A major motif of this chemical calamity is opioid use disorder in adolescents and young adults that was stimulated by the 19th century identification of such highly addictive drugs as morphine, heroin and a non-opiate, cocaine.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Forensic Toxicology, Section of Legal Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
Drugged driving is associated with an increased risk of road accidents worldwide. In Italy, driving under the influence (DUI) of alcohol and drugs is a reason for driving disqualification or revocation of the driving license. Drivers charged with driving under the influence of alcohol and drugs must attend a Local Medical Commission (LMC) to undergo mandatory examinations to regain the suspended license.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
This study aimed to explore the roles of microRNAs (miRNAs) in the post-transcriptional regulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the bovine hypothalamus and to screen key regulatory miRNAs. Targetscan was used to predict the potential miRNAs binding to 3' untranslated regions (3'UTR). Bioinformatics analysis predicted 7 miRNA binding sites in the bovine 3'UTR, which were bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, bta-miR-758, bta-miR-877, and bta-miR-381, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!