Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).

Comput Methods Programs Biomed

Technical University of Catalonia, Barcelona East Engineering School, Department of Mathematics, Barcelona, Spain. Electronic address:

Published: February 2023

Background And Objectives: Visual analysis of cell morphology has an important role in the diagnosis of hematological diseases. Morphological cell recognition is a challenge that requires experience and in-depth review by clinical pathologists. Within the new trend of introducing computer-aided diagnostic tools in laboratory medicine, models based on deep learning are being developed for the automatic identification of different types of cells in peripheral blood. In general, well-annotated large image sets are needed to train the models to reach a desired classification performance. This is especially relevant when it comes to discerning between cell images in which morphological differences are subtle and when it comes to low prevalent diseases with the consequent difficulty in collecting cell images. The objective of this work is to develop, train and validate SyntheticCellGAN (SCG), a new system for the automatic generation of artificial images of white blood cells, maintaining morphological characteristics very close to real cells found in practice in clinical laboratories.

Methods: SCG is designed with two sequential generative adversarial networks. First, a Wasserstein structure is used to transform random noise vectors into low resolution images of basic mononuclear cells. Second, the concept of image-to-image translation is used to build specific models that transform the basic images into high-resolution final images with the realistic morphology of each cell type target: 1) the five groups of normal leukocytes (lymphocytes, monocytes, eosinophils, neutrophils and basophils); 2) atypical promyelocytes and hairy cells, which are two relevant cell types of complex morphology with low abundance in blood smears.

Results: The images of the SCG system are evaluated with four experimental tests. In the first test we evaluated the generated images with quantitative metrics for GANs. In the second test, morphological verification of the artificial images is performed by expert clinical pathologists with 100% accuracy. In the third test, two classifiers based on convolutional neural networks (CNN) previously trained with images of real cells are used. Two sets of artificial images of the SCG system are classified with an accuracy of 95.36% and 94%, respectively. In the fourth test, three CNN classifiers are trained with artificial images of the SCG system. Real cells are identified with an accuracy ranging from 87.7% to 100%.

Conclusions: The SCG system has proven effective in creating images of all normal leukocytes and two low-prevalence cell classes associated with diseases such as acute promyelocyte leukemia and hairy cell leukemia. Once trained, the system requires low computational cost and can help augment high-quality image datasets to improve automatic recognition model training for clinical laboratory practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.107314DOI Listing

Publication Analysis

Top Keywords

artificial images
20
scg system
20
images
14
real cells
12
images scg
12
automatic generation
8
generation artificial
8
cells
8
generative adversarial
8
adversarial networks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!