Curcumin is a natural plant derived antimicrobial, which was shown to inactivate or inhibit the growth of a broad spectrum of microorganisms through photodynamic inactivation. The purpose of the present study is to evaluate the influence of curcumin against commensal spoilage bacteria on chicken, foodborne pathogens, and the chicken skin pH and color. Chicken skin samples were immersed into water, photosensitizer curcumin (PSC), or peracetic acid (PAA). PSC samples were subsequently subjected to illumination by LEDs (430 nm). The PSC treatments did not inhibit the outgrowth of the four groups of spoilage bacteria evaluated. PSC treatment resulted in 2.9 and 1.5 log CFU/cm reduction of L. monocytogenes and Salmonella, respectively. Over a 10-d period, population of Salmonella remained significantly lower on PSC treated samples compared to other treatments. PSC treatment resulted in no significant changes in pH or color as compared to water treated samples. This research suggests PSC effectively controlled pathogen outgrowth on chicken without negatively influencing quality; and may be suitable for use in commercial chicken processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801210PMC
http://dx.doi.org/10.1016/j.psj.2022.102417DOI Listing

Publication Analysis

Top Keywords

photosensitizer curcumin
8
spoilage bacteria
8
chicken skin
8
psc treatment
8
treated samples
8
psc
7
chicken
6
influences photosensitizer
4
curcumin
4
curcumin microbial
4

Similar Publications

Tuberculosis (TB) is one of the leading causes of death in the world, despite being a preventable and curable disease. Irrespective of tremendous advancements in early detection and treatment, this disease still has high mortality rates. This is due to the development of antibiotic resistance, which significantly reduced the efficacy of antibiotics, rendering them useless against this bacterial infection.

View Article and Find Full Text PDF

Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs).

View Article and Find Full Text PDF

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Analysis of the biomolecular profile by Fourier transform vibrational spectroscopy (FT-IR) in Acinetobacter baumannii after application of photodynamic therapy with curcumin "in vitro ".

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Photobiology Applied to Health (PhotoBioS) - Research and Development Institute- R&DI, University of Vale do Paraíba, Univap. Shishima Hifumi Avenue, 2911, 12244-000, São José dos Campos, São Paulo, Brazil. Electronic address:

Acinetobacter baumannii stands out for its antimicrobial resistance and high capacity to cause hospital infections, posing a severe threat to global public health. Thus, there is an urgent need for new therapeutic strategies. This work applied photodynamic therapy (PDT) with curcumin to Acinetobacter baumannii, and bacterial cell viability was assessed.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) is a new and promising strategy for eliminating foodborne pathogenic bacteria in food preservation, reducing associated health risks for consumers. This study aimed to develop an innovative PDI-based system to inactivate Salmonella Enteritidis PT4 on eggshells. The system includes 405 nm light-emitting diodes (LEDs) and the application of curcumin or carvacrol as photosensitizers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!