Catechins have proven to have several health benefits, yet a huge interindividual variability occurs. The metabolic potency of the colonic microbiota towards catechin is a key determinant of this variability. Microbiota from two donors - previously characterized as a fast and a slow converter- were incubated with (+)-catechin in vitro. The robustness of in vitro metabolic profiles was verified by well-fitted human trials. The colon region-dependent and donor-dependent patterns were reflected in both metabolic features and colonic microbiota composition. Upstream and downstream metabolites were mainly detected in the proximal and distal colons, respectively, and were considered important explanatory variables for microbiota clustering in the corresponding colon regions. Higher abundances of two catechin-metabolizing bacteria, Eggerthella and Flavonifractor were found in the distal colon compared to the proximal colon and in slow converter than fast converter. Additionally, these two bacteria were enriched in treatment samples compared to sham treatment samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.135203DOI Listing

Publication Analysis

Top Keywords

colon region-dependent
8
colonic microbiota
8
treatment samples
8
microbiota
5
colon
5
human gut
4
gut microbiota
4
microbiota stratified
4
stratified +-catechin
4
+-catechin metabolism
4

Similar Publications

Theoretically, the risk of food effects for extended-release (ER) products compared to IR products may be less because: (1) postprandial physiological changes are usually transient and last for 2-3 h only; and (2) the percentage of drug release from an ER product within the first 2-3 h post dose is usually small under both fasted and fed states. The major postprandial physiological changes that can affect oral absorption of ER drugs are delayed gastric emptying and prolonged intestinal transit. Oral absorption of ER drugs under fasted state mainly occurs in large intestine (colon and rectum) while the absorption of ER drugs under fed state occurs in both small and large intestines.

View Article and Find Full Text PDF

Background: Cytokines are essential in autoimmune inflammatory processes that accompany type 1 diabetes. Tumor necrosis factor alpha plays a key role among others in modulating enteric neuroinflammation, however, it has a dual role in cell degeneration or survival depending on different TNFRs. In general, TNFR1 is believed to trigger apoptosis, while TNFR2 promotes cell regeneration.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) can activate pro-inflammatory cascades in the gastrointestinal tract. Our aim was to determine TLR4 expression in myenteric neurons of different gut regions using a type 1 diabetic model. Ten weeks after the onset of hyperglycemia, myenteric whole-mount preparations from the duodenum, ileum and colon of streptozotocin-induced diabetic, insulin-treated diabetic and control rats were prepared for TLR4/peripherin double-labelling fluorescent immunohistochemistry.

View Article and Find Full Text PDF

Human gut microbiota stratified by (+)-catechin metabolism dynamics reveals colon region-dependent metabolic profile.

Food Chem

May 2023

Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium. Electronic address:

Catechins have proven to have several health benefits, yet a huge interindividual variability occurs. The metabolic potency of the colonic microbiota towards catechin is a key determinant of this variability. Microbiota from two donors - previously characterized as a fast and a slow converter- were incubated with (+)-catechin in vitro.

View Article and Find Full Text PDF

The Donor-Dependent and Colon-Region-Dependent Metabolism of (+)-Catechin by Colonic Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem.

Molecules

December 2021

Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.

The intestinal absorption of dietary catechins is quite low, resulting in most of them being metabolized by gut microbiota in the colon. It has been hypothesized that microbiota-derived metabolites may be partly responsible for the association between catechin consumption and beneficial cardiometabolic effects. Given the profound differences in gut microbiota composition and microbial load between individuals and across different colon regions, this study examined how microbial (+)-catechin metabolite profiles differ between colon regions and individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!