Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The combination of terahertz (THz) spectroscopic measurements and multivariate calibration techniques has become a well-established technique in many research fields. However, intentional or unintentional changes in environmental conditions, THz instruments and/or of the substance itself make the established calibration model becoming insufficient and inadequate for the further application. In this article, we introduce, discuss, and evaluate a new multivariate calibration method, the CWT-ZM, that combines the merits of the Zernike moment (ZM) invariance and the continuous wavelet transform (CWT) time-frequency analysis. With the help of a wavelet time-frequency analysis, the THz pulse is expanded into a two-dimensional (2D) time-frequency plane that provides richer and more direct characteristic information in the time and frequency domain simultaneously. In addition, Zernike moments provide linearly independent descriptors for the 2D time-frequency intensity image and are invariant to THz signal affine transformations, such as peak shifting, baseline drifting, and scaling. In this manner, we obtain a set of features that exhibit a high capability to capture the concentrations of the target compounds and a high invariance of the different measuring instruments and the variable environment. This approach results in a more robust regression system with improved generalization properties with respect to standard methods. Experiments were then conducted on a THz dataset of pharmaceutical tablets acquired by two different THz instruments, and these confirmed the effectiveness of the proposed approach. Furthermore, CWT-ZM is an extensible framework that can be combined with various spectral qualitative and quantitative analysis algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.122234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!