In the twenty-first century, there has been an increase in energy demand and waste production, due to the rising population of the world. One good approach for satisfying the energy demand and overcoming the waste management issues is to convert waste to energy. Additionally, using waste biomass as the feedstock of waste-to-energy (WtE) conversion methods makes them renewable and green and also helps the environmental challenges and reduces the emission of greenhouse gases (GHGs). Gasification is a thermochemical WtE route, which can produce hydrogen-rich gaseous biofuel called synthetic gas (syngas), from wastes. In this paper, different aspects of gasification process are reviewed with greater focus on catalyst usage. Syngas processing steps, which increase the quality and H content of the syngas to form bio-hydrogen, are discussed. Solid oxide fuel cell (SOFC) technology is one of the most promising techniques of renewable energy production due to their environmental cleanness characteristics and high efficiencies. Thus, one of the best ways to exploit the energy content of the bio-hydrogen product of gasification is to employ it in a SOFC. Therefore, waste biomass gasification process can be integrated with SOFCs to build high efficiency systems for production of clean and renewable energy from waste, which are called integrated gasification fuel cell (IGFC) systems. These systems provide the opportunity of further upgrading of syngas inside the SOFC. In this paper, we are going to briefly discuss fuel cell technology (especially SOFCs) and review SOFC applications from the aspect of integration with gasification process (IGFC system). Finally, the impacts and issues of gasification process and SOFC technology are considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!