Split-hand/foot malformation (SHFM) with long-bone deficiency (SHFLD) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. It includes three different types; SHFLD1 (MIM % 119,100), SHFLD2 (MIM % 610,685) and SHFLD3 (MIM # 612576). The latter was shown to be the most commonly reported with a duplication in the 17p13.1p13.3 locus that was narrowed down to the BHLHA9 gene. Here, we report a consanguineous Lebanese family with three members presenting with limb abnormalities including tibial hemimelia. One of these patients presented with additional bowing fibula and another with bilateral split hand. CGH array analysis followed by RQ-PCR allowed us to detect the first homozygous duplication on the short arm of chromosome 17p13.3 including the BHLHA9 gene and involved in SHFLD3. Interestingly, one patient with the homozygous duplicated region, carrying thus four BHLHA9 copies presented with long bone deficiency but no SHFM. The incomplete penetrance and the variable expressivity of the disease in this family as well as the presence of the BHLHA9 homozygous duplication rendered genetic counseling extremely challenging and preimplantation genetic diagnosis almost impossible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.63094 | DOI Listing |
Anim Genet
February 2025
Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany.
In this study, I report an unexpected case of a Holstein calf that developed horns even though the sire was homozygous and the dam was heterozygous for polledness. After verifying and confirming the correct parentage, the parents and offspring were genotyped with the Illumina EuroG_MD BeadChip and the SNPs in the polled region on chromosome 1 were evaluated. In addition, the father was sequenced with next generation sequencing to identify possible, previously unknown variants.
View Article and Find Full Text PDFNephrology (Carlton)
January 2025
Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia.
Aim: Autosomal recessive primary hyperoxalurias (PH) are genetic disorders characterised by elevated oxalate production. Mutations in genes involved in glycoxylate metabolism are the underlying cause of PH. Type 1 PH (PH1) results in malfunctioning of alanine-glyoxylate aminotransferase enzymes of liver due to a change in the genetic sequence of alanine-glyoxylate aminotransferase (AGXT) gene.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
December 2024
Department of Neurology, Ankara Etlik City Hospital, Ankara, Türkiye.
Objectives: Sialidosis type 1 is a rare autosomal recessive lysosomal storage disorder caused by pathogenic variants in the gene, which encodes the sialic acid-degrading enzyme α-neuraminidase. Sialidosis type 1 is a milder form with a late-onset phenotype, characterized by progressive myoclonic epilepsy and ataxia with cherry-red spots. Sialidosis type 2 is an early-onset and more severe form presenting with dysmorphic features, hepatosplenomegaly and cognitive delay.
View Article and Find Full Text PDFBMJ Case Rep
December 2024
Paediatrics, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
Diagnosing hereditary spastic paraplegia (HSP) in paediatric patients can be challenging, especially when there is no positive family history. Children are often initially misdiagnosed with cerebral palsy due to the gradual progression of the disease and non-specific neuroimaging findings, despite the absence of perinatal insult. This misdiagnosis can prevent timely prenatal diagnosis, limiting the ability to make informed decisions about the pregnancy and to plan early interventions.
View Article and Find Full Text PDFGenet Med Open
February 2024
Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom.
Purpose: In parent-child trios with genome sequencing data, we investigated inherited biallelic deletions to identify known and novel genetic disorders.
Methods: We developed a copy-number variations analysis pipeline based on autosomal genome sequencing read depth of Genomics England 100,000 Genomes Project data from 11,754 parent-child trios and additional 18,875 non-trios. A control cohort of 15,440 cancer patients provided independent deletion frequencies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!