Light Field (LF) imaging empowers many attractive applications by simultaneously recording spatial and angular information of light rays. In order to meet the challenges of LF storage and transmission, many view reconstruction-based LF compression methods are put forward. However, occlusion issue and under-exploitation of LF rich structure information limit the view reconstruction qualities, which further influence LF compression efficiency. In order to alleviate these problems, in this paper, we propose a geometry-aware view reconstruction network for LF compression. In our method, only sparsely-sampled LF views are encoded, which are further used as priors to reconstruct the un-sampled LF views at the decoder side. The proposed reconstruction process contains two stages including geometry-aware reconstruction and texture refinement. The geometry-aware reconstruction stage utilizes a multi-stream framework, which can fully explore LF spatial-angular, location and geometry information. The texture refinement stage can adequately fuse such rich LF information to further improve LF reconstruction quality. Comprehensive experimental results validate the superiority of the proposed method. The rate-distortion performance and the perceptual quality of reconstructed views further demonstrate that the proposed method can save more bitrate while increasing LF reconstruction quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789090PMC
http://dx.doi.org/10.1038/s41598-022-26887-4DOI Listing

Publication Analysis

Top Keywords

view reconstruction
12
geometry-aware view
8
reconstruction
8
reconstruction network
8
light field
8
geometry-aware reconstruction
8
texture refinement
8
reconstruction quality
8
proposed method
8
geometry-aware
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!