Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are high- and low-frequency noise signals in a microseismic signal that can lead to the distortion and submersion of an effective waveform. At present, effectively removing high- and low-frequency noise without losing the effective signal of local waveform spikes remains a challenge. This work addresses this issue with an improved wavelet adaptive thresholding method. Because a denoised signal conceptually approximates the minimum error, a dynamic selection model is established for the optimal threshold. On this basis, an adaptive correction factor a is proposed to reflect the noise intensity, which uses the 1/2 power of the ratio of the median absolute value to the amplitude of the monitoring data to reflect the noise intensity of the wavelet detail signal and corrects the size of the denoising scale. Finally, the performance of the improved method is quantitatively evaluated in terms of the denoising quality and efficiency using the signal-to-noise ratio, root-mean-square error, sample entropy and running time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789042 | PMC |
http://dx.doi.org/10.1038/s41598-022-26576-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!