In this review, we describe the genomic and physiological features of the yeast species predominantly isolated from Nuruk, a starter for traditional Korean rice wines, and Jang, a traditional Korean fermented soy product. Nuruk and Jang have several prevalent yeast species, including Saccharomycopsis fibuligera, Hyphopichia burtonii, and Debaryomyces hansenii complex, which belong to the CUG clade showing high osmotic tolerance. Comparative genomics revealed that the interspecies hybridization within yeast species for generating heterozygous diploid genomes occurs frequently as an evolutional strategy in the fermentation environment of Nuruk and Jang. Through gene inventory analysis based on the high-quality reference genome of S. fibuligera, new genes involved in cellulose degradation and volatile aroma biosynthesis and applicable to the production of novel valuable enzymes and chemicals can be discovered. The integrated genomic and transcriptomic analysis of Hyphopichia yeasts, which exhibit strong halotolerance, provides insights into the novel mechanisms of salt and osmo-stress tolerance for survival in fermentation environments with a low-water activity and high-concentration salts. In addition, Jang yeast isolates, such as D. hansenii, show probiotic potential for the industrial application of yeast species beyond fermentation starters to diverse human health sectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsyr/foac066 | DOI Listing |
Mycopathologia
January 2025
Teikyo University Institute of Medical Mycology (TIMM), 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.
We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.
View Article and Find Full Text PDFWith the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
School of Life Science, Nanyang Normal University, Nanyang 473061, PR China.
Two novel yeast strains, NYNU 236247 and NYNU 23523, were isolated from the leaves of Hance, collected in the Tianchi Mountain National Forest Park, Henan Province, central China. Phylogenetic analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region revealed the closest relatives of the strains are three described species: , and . The novel species differed from the type strains of these three species by 12 to 22 nucleotide substitutions and 1 gap (~2.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.
With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.
View Article and Find Full Text PDFMicrobial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!