Enterovirus 71 (EV71), a small, single-stranded, positive-sense RNA virus belonging to the enterovirus genus in the family Picornaviridae, causes hand, foot, and mouth disease. Although EV71 seriously threatens to public health, no effective antiviral drugs are available for treating this disease. In this study, we found that ML390, a dihydroorotate dehydrogenase inhibitor, has potential anti-EV71 activity. ML390 dose-dependently inhibited EV71 replication with IC and selectivity index values of 0.06601 μM and 156.5, respectively. Supplementation with the downstream product orotate significantly suppressed the ability of ML390 to inhibit EV71 replication. Moreover, an adequate supply of exogenous uridine and cytosine suppressed the anti-EV71 activity of ML390. Thus, the antiviral activity of ML390 is mediated by the inhibition of the pyrimidine synthesis pathway. In an EV71-infected mouse model, ML390 reduced the load of EV71 in the brain, liver, heart, spleen, front legs, and hind legs, and significantly increased the survival rate of the mice infected by EV71. ML390 shows potential for the treatment of hand, foot, and mouth disease caused by EV71 infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2022.105498 | DOI Listing |
Antiviral Res
January 2023
Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China; Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China. Electronic address:
Enterovirus 71 (EV71), a small, single-stranded, positive-sense RNA virus belonging to the enterovirus genus in the family Picornaviridae, causes hand, foot, and mouth disease. Although EV71 seriously threatens to public health, no effective antiviral drugs are available for treating this disease. In this study, we found that ML390, a dihydroorotate dehydrogenase inhibitor, has potential anti-EV71 activity.
View Article and Find Full Text PDFJ Med Virol
October 2022
Department of Microbiology, Faculty of Naval Medicine, Navy Medical University, Shanghai, People's Republic of China.
PLoS Genet
November 2020
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
Glioblastoma is the most common and aggressive type of cancer in the brain; its poor prognosis is often marked by reoccurrence due to resistance to the chemotherapeutic agent temozolomide, which is triggered by an increase in the expression of DNA repair enzymes such as MGMT. The poor prognosis and limited therapeutic options led to studies targeted at understanding specific vulnerabilities of glioblastoma cells. Metabolic adaptations leading to increased synthesis of nucleotides by de novo biosynthesis pathways are emerging as key alterations driving glioblastoma growth.
View Article and Find Full Text PDFACS Med Chem Lett
December 2016
Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, United States; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States.
Homeobox transcription factor A9 (HoxA9) is overexpressed in 70% of patients diagnosed with acute myeloid leukemia (AML), whereas only a small subset of AML patients respond to current differentiation therapies. A cell line overexpressing HoxA9 was derived from the bone marrow of a lysozyme-GFP mouse. In this fashion, GFP served as an endogenous reporter of differentiation, permitting a high-throughput phenotypic screen against the MLPCN library.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!