Fibrillization kinetics and rheological properties of panda bean (Vigna umbellata (Thunb.) Ohwi et Ohashi) protein isolate at pH 2.0.

Int J Biol Macromol

Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. Electronic address:

Published: February 2023

Recently, research interests are growing regarding the formation and mechanisms of amyloid fibrils from plant proteins. This study investigated the fibrillization kinetics and rheological behaviors of panda bean protein isolate (PBPI) at pH 2.0 and 90 °C for various heating times (0-24 h). Results showed that PBPI formed two distinct classes of fibrils after heating for 10 h, including flexible fibril with a contour length of ∼751 nm, and rigid fibril with periodicity of ∼40 nm. The secondary structural changes during fibril formation were monitored by circular dichroism spectroscopy and indicated that β-sheet content increased first (0-12 h) and then decreased (>12 h), which coincided with similar changes in thioflavin T fluorescence. The gel electrophoresis revealed that the polypeptides of PBPI were progressively hydrolyzed upon heating, and the resulting short fragments were involved in fibril formation rather than PBPI monomer. PBPI-derived fibrils showed extremely high viscosity and storage modulus. A plausible molecular mechanism for PBPI fibrillation process was hypothesized, including protein unfolding, hydrolysis, assembly into matured fibrils, and dissociation of the fibrils. The findings provide useful information to manipulate the formation of legume proteins-based fibrils and will benefit future research to explore their potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.165DOI Listing

Publication Analysis

Top Keywords

fibrillization kinetics
8
kinetics rheological
8
panda bean
8
protein isolate
8
fibril formation
8
fibrils
6
pbpi
5
rheological properties
4
properties panda
4
bean vigna
4

Similar Publications

Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.

View Article and Find Full Text PDF

Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc.

View Article and Find Full Text PDF

Nano-Fibrillated Bacterial Cellulose Nanofiber Surface Modification with EDTA for the Effective Removal of Heavy Metal Ions in Aqueous Solutions.

Materials (Basel)

January 2025

Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.

Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.

View Article and Find Full Text PDF

The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.

View Article and Find Full Text PDF

Investigating amyloid-β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1-42) peptide to misfold in solution, correlated to the aetiology of Alzheimer's disease (AD), is one of the main hindrances to characterising its aggregation kinetics in a cell-mimetic environment. Moreover, the Aβ(1-42) aggregation triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), leading to cellular dysfunction and multiple cell death modalities, exacerbated by reactive oxygen species (ROS), which damage cellular components and trigger inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!