Substrate stiffness regulates the recurrent glioblastoma cell morphology and aggressiveness.

Matrix Biol

Shilpee Dutt laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.. Electronic address:

Published: January 2023

Recurrent glioblastoma is highly aggressive with currently no specific treatment regime. Therefore, to identify novel therapeutic targets for recurrent GBM, we used a cellular model developed in our lab from commercially available cell line U87MG and patient-derived cultures that allows the comparison between radiation naïve (Parent) and recurrent GBM cells generated after parent cells are exposed to lethal dose of radiation. Total RNA-seq of parent and recurrent population revealed significant upregulation of cell-ECM interactions pathway in the recurrent population. These results led us to hypothesize that the physical microenvironment contributes to the aggressiveness of recurrent GBM. To verify this, we cultured parent and recurrent GBM cells on collagen-coated polyacrylamide gels mimicking the stiffness of normal brain (Young's modulus E = 0.5kPa) or tumorigenic brain (E = 10kPa) and tissue culture plastic dishes (E ∼ 1 GPa). We found that compared to parent cells, recurrent cells showed higher proliferation, invasion, migration, and resistance to EGFR inhibitor. Using orthotopic GBM mouse model and resection model, we demonstrate that recurrent cells cultured on 0.5kPa had higher in vivo tumorigenicity and recurrent disease progression than parent cells, whereas these differences were insignificant when parent and recurrent cells were cultured on plastic substrates. Furthermore, recurrent cells on 0.5kPa showed high expression of ECM proteins like Collagen, MMP2 and MMP9. These proteins were also significantly upregulated in recurrent patient biopsies. Additionally, the brain of mice injected with recurrent cells grown on 0.5kPa showed higher Young's moduli suggesting the ability of these cells to make the surrounding ECM stiffer. Total RNA-seq of parent and recurrent cells grown on plastic and 0.5kpa identified PLEKHA7 significantly upregulated specifically in recurrent cells grown on 0.5 kPa substrate. PLEKHA7 was also found to be high in recurrent GBM patient biopsies. Accordingly, PLEKHA7 knockdown reduced invasion and survival of recurrent GBM cells. Together, these data provide an in vitro model system that captures the observed in vivo and clinical behavior of recurrent GBM by mimicking mechanical microenvironment and identifies PLEKHA7 as a novel potential target for recurrent GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2022.12.002DOI Listing

Publication Analysis

Top Keywords

recurrent gbm
32
recurrent cells
28
recurrent
21
parent recurrent
20
cells
14
gbm cells
12
parent cells
12
cells grown
12
gbm
9
recurrent glioblastoma
8

Similar Publications

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is one of the deadliest and most heterogeneous forms of brain cancer, characterized by its resistance to conventional therapies. Within GBM, a subpopulation of slow-cycling cells, often linked to quiescence and stemness, plays a crucial role in treatment resistance and tumor recurrence. This study aimed to identify novel biomarkers associated with these slow-cycling GBM cells.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!