Spatial proteomics in three-dimensional intact specimens.

Cell

Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany; Graduate School of Neuroscience (GSN), 82152 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany. Electronic address:

Published: December 2022

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2022.11.021DOI Listing

Publication Analysis

Top Keywords

spatial proteomics
4
proteomics three-dimensional
4
three-dimensional intact
4
intact specimens
4
specimens spatial
4
spatial molecular
4
molecular profiling
4
profiling complex
4
complex tissues
4
tissues essential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!