The effects of pulsed electric fields treatment on the structure and physicochemical properties of dialdehyde starch.

Food Chem

School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China. Electronic address:

Published: May 2023

The structural and physicochemical properties changes of corn starch oxidized by sodium periodate under the assistance of pulsed electric fields (PEF) were studied. It was found that dialdehyde starch (DAS) particles produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control without PEF. The solubility of the DAS (12 kV/cm PEF- assisted oxidation) improved by 70.2% when compared to the native starch. Increment in the strength of the PEF, led to a decrease in the viscosity of the DAS. In addition, the aldehyde group content of the DAS produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control increased by 11.6% when compared with the traditional oxidation method. PEF is an effective method to promote oxidation reaction of starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.135231DOI Listing

Publication Analysis

Top Keywords

pulsed electric
8
electric fields
8
physicochemical properties
8
dialdehyde starch
8
produced pef-assisted
8
pef-assisted oxidation
8
oxidation exhibited
8
exhibited shrinkage
8
shrinkage pits
8
pits larger
8

Similar Publications

With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip's size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component.

View Article and Find Full Text PDF

A Novel Real-Time Threshold Algorithm for Closed-Loop Epilepsy Detection and Stimulation System.

Sensors (Basel)

December 2024

The Department of Information Systems and Computer Science, Ateneo de Manila University, Quezon City 1108, Philippines.

Epilepsy, as a common brain disease, causes great pain and stress to patients around the world. At present, the main treatment methods are drug, surgical, and electrical stimulation therapies. Electrical stimulation has recently emerged as an alternative treatment for reducing symptomatic seizures.

View Article and Find Full Text PDF

Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender ( spp.) Essential Oil.

Foods

January 2025

Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.

Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.

View Article and Find Full Text PDF

Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation.

Int J Mol Sci

December 2024

Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy.

In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation.

View Article and Find Full Text PDF

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!