Clinical implications of the intrinsic molecular subtypes in hormone receptor-positive and HER2-negative metastatic breast cancer.

Cancer Treat Rev

Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona, Spain. Electronic address:

Published: January 2023

Traditionally, the classification of breast cancer relies on the expression of immunohistochemical (IHC) biomarkers readily available in clinical practice. Using highly standardized and reproducible assays across patient cohorts, intrinsic molecular subtypes of breast cancer - also called "intrinsic subtypes" (IS) - have been identified based on the expression of 50 genes. Although IHC-based subgroups and IS moderately correlate to each other, they are not superimposable. In fact, non-luminal biology has been detected in a substantial proportion (5-20%) of hormone receptor-positive (HoR+) tumors, has prognostic value, and identifies reduced and increased sensitivity to endocrine therapy and chemotherapy, respectively. During tumor progression, a shift toward a non-luminal estrogen-independent and more aggressive phenotype has been demonstrated. Intrinsic genomic instability and cell plasticity, alone or combined with external constraints deriving from treatment selective pressure or interplay with the tumor microenvironment, may represent the determinants of such biological diversity between primary and metastatic disease, and during metastatic tumor evolution. In this review, we describe the distribution and the clinical behavior of IS as the disease progresses, focusing on HoR+/HER2-negative advanced breast cancer. In addition, we provide an overview of the ongoing clinical trials aiming to validate the predictive and prognostic value of IS towards their incorporation into routine care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ctrv.2022.102496DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
intrinsic molecular
8
molecular subtypes
8
hormone receptor-positive
8
clinical
4
clinical implications
4
implications intrinsic
4
subtypes hormone
4
receptor-positive her2-negative
4
her2-negative metastatic
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.

Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!