Compound 2 [4-amino-N-(2,6-dimethylphenyl)benzamide] is an effective anticonvulsant in several animal models. For example, following oral administration to mice, it antagonized maximal electroshock (MES) induced seizures with an ED50 of 1.7 mg/kg. During drug disposition studies with 2, we found that it was rapidly metabolized by N-acetylation. Thirty minutes after oral administration of 1.7 mg/kg of 2 to mice, plasma concentrations of parent drug and the N-acetyl metabolite 5 were 1.09 and 0.41 microgram/mL, respectively. Six hours postadministration the concentrations were 0.23 and 0.22 microgram/mL, respectively. In order to sterically preclude or diminish the rate of metabolic N-acetylation, we synthesized analogues of 2 possessing either one (3) or two (4) methyl groups ortho to the 4-amino substituent. Both compounds antagonized MES-induced seizures after administration to mice; oral ED50 values for 3 and 4 were 3.5 and 5.6 mg/kg, respectively. Compound 3 was rapidly metabolized by N-acetylation. However, 4 provided exceptionally high and long-lived plasma concentrations of parent drug; no N-acetyl metabolite could be detected. While 2 and 3 had no pharmacologically relevant effects on hexobarbital-induced sleeping time in mice, 4 was a potent, dose-dependent potentiator of sleeping time. Oral administration of 375 micrograms/kg led to a 61% increase in sleeping time relative to control values. Thus, 4 represents one of the most potent potentiators of hexobarbital-induced sleeping time described to date.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00393a010DOI Listing

Publication Analysis

Top Keywords

sleeping time
16
oral administration
12
administration mice
8
rapidly metabolized
8
metabolized n-acetylation
8
plasma concentrations
8
concentrations parent
8
parent drug
8
drug n-acetyl
8
n-acetyl metabolite
8

Similar Publications

Purpose: Sleep (SL), physical activity (PA), and wellbeing (WB) are three factors linked to positive development in adolescence. Despite theoretical support and some empirical evidence of developmental associations between these factors, few studies have rigorously investigated reciprocal associations over time separating between-person and within-person effects, and none have investigated all three in concert. Thus, it remains unclear how the interplay between SL, PA and WB unfolds across time within individuals.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the longitudinal bi-directional relationship between self-reported restrictive eating behaviours and sleep characteristics within a sample of UK adolescents from the Millennium Cohort Study (MCS).

Method: Using a Structural Equation Modelling approach, the present study investigated the prospective associations between individual sleep behaviours (e.g.

View Article and Find Full Text PDF

Objective: Common examinations for diagnosing obstructive sleep apnea (OSA) are polysomnography (PSG) and home sleep apnea testing (HSAT). However, both PSG and HSAT require that sensors be attached to a subject, which may disturb their sleep and affect the results. Hence, in this study, we aimed to verify a wireless radar framework combined with deep learning techniques to screen for the risk of OSA in home-based environments.

View Article and Find Full Text PDF

Challenges and opportunities for statistical power and biomarker identification arising from rhythmic variation in proteomics.

NPJ Biol Timing Sleep

January 2025

Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK.

Time-of-day variation in the molecular profile of biofluids and tissues is a well-described phenomenon, but-especially for proteomics-is rarely considered in terms of the challenges this presents to reproducible biomarker identification. We provide a case study analysis of human circadian and ultradian rhythmicity in proteins, including in the complement and coagulation cascades and apolipoproteins, with PLG, CFAH, ZA2G and ITIH2 demonstrated as rhythmic for the first time. We also show that rhythmicity increases the risk of Type II errors due to the reduction in statistical power from increased variance, and that controlling for rhythmic time-of-day variation improves statistical power and reduces the chances of Type II errors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!