The analysis of nuclear magnetic resonance (NMR) spectra to detect peaks and characterize their parameters, often referred to as deconvolution, is a crucial step in the quantification, elucidation, and verification of the structure of molecular systems. However, deconvolution of 1D NMR spectra is a challenge for both experts and machines. We propose a robust, expert-level quality deep learning-based deconvolution algorithm for 1D experimental NMR spectra. The algorithm is based on a neural network trained on synthetic spectra. Our customized pre-processing and labeling of the synthetic spectra enable the estimation of critical peak parameters. Furthermore, the neural network model transfers well to the experimental spectra and demonstrates low fitting errors and sparse peak lists in challenging scenarios such as crowded, high dynamic range, shoulder peak regions as well as broad peaks. We demonstrate in challenging spectra that the proposed algorithm is superior to expert results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2022.107357DOI Listing

Publication Analysis

Top Keywords

nmr spectra
16
deconvolution nmr
8
spectra
8
deep learning-based
8
neural network
8
synthetic spectra
8
deconvolution
4
spectra deep
4
learning-based approach
4
approach analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!