A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Copula-based bivariate count data regression models for simultaneous estimation of crash counts based on severity and number of vehicles. | LitMetric

Copula-based bivariate count data regression models for simultaneous estimation of crash counts based on severity and number of vehicles.

Accid Anal Prev

Department of Civil and Environmental Engineering, The Pennsylvania State University, 231 Sackett Building, University Park, PA 16802, United States. Electronic address:

Published: March 2023

Statistical models of crash frequency typically apply univariate regression models to estimate total crash frequency or crash counts by various categories. However, a possible correlation between the dependent variables or unobserved variables associated with the dependent variables is not considered when univariate models are used to estimate categorized crash counts-such as different severity levels or numbers of vehicles involved. This may lead to inefficient parameter estimates compared to multivariate models that directly consider these correlations. This paper compares the results obtained from univariate negative binomial regression models of property-damage only (PDO) and fatal plus injury (FI) crash frequencies to models using traditional bivariate and copula-based bivariate negative binomial regression models. A similar comparison was made using models for the expected crash frequency of single- (SV) and multi-vehicle (MV) crashes. The models were estimated using two-lane, two-way rural highway segment-level data from an engineering district in Pennsylvania. The results show that all bivariate negative binomial models (with or without copulas) outperformed the corresponding univariate negative binomial models for PDO and FI, as well as SV and MV, crashes. Second, the statistical association of various traffic and roadway/roadside features with PDO and FI, as well as SV and MV crashes, were not the same relative to their corresponding relationships in the univariate models. The bivariate negative binomial model with normal copula outperformed all other models based on the goodness-of-fit statistics. The results suggest that copula-based bivariate negative binomial regression models may be a valuable alternative for univariate models when simultaneously modeling two disaggregate levels of crash counts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2022.106928DOI Listing

Publication Analysis

Top Keywords

negative binomial
24
regression models
20
models
16
bivariate negative
16
copula-based bivariate
12
crash counts
12
crash frequency
12
univariate models
12
binomial regression
12
crash
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!