Quantum error correction holds the key to scaling up quantum computers. Cosmic ray events severely impact the operation of a quantum computer by causing chip-level catastrophic errors, essentially erasing the information encoded in a chip. Here, we present a distributed error correction scheme to combat the devastating effect of such events by introducing an additional layer of quantum erasure error correcting code across separate chips. We show that our scheme is fault tolerant against chip-level catastrophic errors and discuss its experimental implementation using superconducting qubits with microwave links. Our analysis shows that in state-of-the-art experiments, it is possible to suppress the rate of these errors from 1 per 10 s to less than 1 per month.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.240502DOI Listing

Publication Analysis

Top Keywords

error correction
12
chip-level catastrophic
12
catastrophic errors
12
quantum error
8
distributed quantum
4
error
4
correction chip-level
4
errors
4
quantum
4
errors quantum
4

Similar Publications

Despite the widespread exploration and availability of parcellations for the functional connectome, parcellations designed for the structural connectome are comparatively limited. Current research suggests that there may be no single "correct" parcellation and that the human brain is intrinsically a multiresolution entity. In this work, we propose the Continuous Structural Connectivitity-based, Nested (CoCoNest) family of parcellations-a fully data-driven, multiresolution family of parcellations derived from structural connectome data.

View Article and Find Full Text PDF

Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.

View Article and Find Full Text PDF

The New Paradigm of Ligand Substitution-Driven Enhancement of Anisotropy from SO Units in Short-Wavelength Region.

ACS Cent Sci

December 2024

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.

For non-π-conjugated [SO] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy.

View Article and Find Full Text PDF

Applications in engineering biology increasingly share the need to run operations on very large numbers of biological samples. This is a direct consequence of the application of good engineering practices, the limited predictive power of current computational models and the desire to investigate very large design spaces in order to solve the hard, important problems the discipline promises to solve. Automation has been proposed as a key component for running large numbers of operations on biological samples.

View Article and Find Full Text PDF

To address the problems of the labeling curved surfaces vegetable with long label, such as the label wrinkled and the easy detachment, a cam-elliptical gear combined labeling mechanism with an improved hypocycloid trajectory is proposed. Provide the process of the mechanism, and establish a kinematic model of the mechanism. In order to improve the motion performances of the cam-elliptical gear combined labeling mechanism and avoid labels damage, the NSGA-II algorithm is used to optimize the parameters of the mechanism, resulting in 80 sets of Pareto solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!