Laminar-turbulent pattern formation is a distinctive feature of the intermittency regime in subcritical plane shear flows. By performing extensive numerical simulations of the plane channel flow, we show that the pattern emerges from a spatial modulation of the turbulent flow, due to a linear instability. We sample over many realizations the linear response of the fluctuating turbulent field to a temporal impulse, in the regime where the turbulent flow is stable, just before the onset of the instability. The dispersion relation is constructed from the ensemble-averaged relaxation rates. As the instability threshold is approached, the relaxation rate of the least damped modes eventually reaches zero. The method allows, despite the presence of turbulent fluctuations and without any closure model, for an accurate estimation of the wave vector of the modulation at onset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.244501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!