Entanglement detection is essential in quantum information science and quantum many-body physics. It has been proved that entanglement exists almost surely for a random quantum state, while the realizations of effective entanglement criteria usually consume exponentially many resources with regard to system size or qubit number, and efficient criteria often perform poorly without prior knowledge. This fact implies a fundamental limitation might exist in the detectability of entanglement. In this work, we formalize this limitation as a fundamental trade-off between the efficiency and effectiveness of entanglement criteria via a systematic method to evaluate the detection capability of entanglement criteria theoretically. For a system coupled to an environment, we prove that any entanglement criterion needs exponentially many observables to detect the entanglement effectively when restricted to single-copy operations. Otherwise, the detection capability of the criterion will decay double exponentially. Furthermore, if multicopy joint measurements are allowed, the effectiveness of entanglement detection can be exponentially improved, which implies a quantum advantage in entanglement detection problems. Our results may shed light on why quantum phenomena are difficult to observe in large noisy systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.230503 | DOI Listing |
Food Chem
January 2025
The Grainger College of Engineering, College of Agricultural, Consumer and Environmental Sciences, Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
Inorganic nanozymes hold promise for biomolecule sensing but face challenges like complex fabrication, toxicity, and low sustainability, limiting their use. To overcome these, a sustainable organic nanozyme (OA nanozyme) was created using amino acids and a biocompatible polymer for effective histamine detection. The OA nanozyme exhibits peroxidase-like activity and was fabricated through a single chelation/polymer entanglement method, enabling rapid production (within 3 h) with uniform morphology (≤100 nm diameter) and a negative surface charge at neutral pH.
View Article and Find Full Text PDFCells must limit RNA-RNA interactions to avoid irreversible RNA entanglement. Cells may prevent deleterious RNA-RNA interactions by genome organization to avoid complementarity however, RNA viruses generate long, perfectly complementary antisense RNA during replication. How do viral RNAs avoid irreversible entanglement? One possibility is RNA sequestration into biomolecular condensates.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, Hong Kong.
Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.
View Article and Find Full Text PDFnpj Quantum Inf
December 2024
ETH Zurich, Department of Physics, Institute for Quantum Electronics, Optical Nanomaterial Group, Auguste-Piccard-Hof, 1, 8093 Zurich, Switzerland.
Optical quantum communication technologies are making the prospect of unconditionally secure and efficient information transfer a reality. The possibility of generating and reliably detecting quantum states of light, with the further need of increasing the private data-rate is where most research efforts are focusing. The physical concept of entanglement is a solution guaranteeing the highest degree of security in device-independent schemes, yet its implementation and preservation over long communication links is hard to achieve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!