We study superconductivity in a three-dimensional zero-density Dirac semimetal in proximity to a ferroelectric quantum critical point. We find that the interplay of criticality, inversion-symmetry breaking, and Dirac dispersion gives rise to a robust superconducting state at the charge-neutrality point, where no Fermi surface is present. Using Eliashberg theory, we show that the ferroelectric quantum critical point is unstable against the formation of a ferroelectric density wave (FDW), whose fluctuations, in turn, lead to a first-order superconducting transition. Surprisingly, long-range superconducting and FDW orders are found to cooperate with each other, in contrast to the more usual scenario of phase competition. Therefore, we suggest that driving charge neutral Dirac materials, e.g., Pb_{x}Sn_{1-x}Te, through a ferroelectric quantum critical point may lead to superconductivity intertwined with FDW order.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.237001DOI Listing

Publication Analysis

Top Keywords

ferroelectric quantum
12
quantum critical
12
critical point
12
zero-density dirac
8
synergetic ferroelectricity
4
ferroelectricity superconductivity
4
superconductivity zero-density
4
dirac
4
dirac semimetals
4
quantum
4

Similar Publications

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.

View Article and Find Full Text PDF

Multidirectional Sliding Ferroelectricity of Rhombohedral-Stacked InSe for Reconfigurable Photovoltaics and Imaging Applications.

Adv Mater

December 2024

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.

Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.

View Article and Find Full Text PDF

Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.

View Article and Find Full Text PDF

Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.

View Article and Find Full Text PDF

Polar topologies show great potentials in memories and other nano-micro devices. To integrate with silicon conducting circuits, it is vital to understand the dynamic evolution and the transformation of different domain configurations under external stimulus. Here in situ transmission electron microscopy is performed and the electrically controlled creation and annihilation of large-scale polar flux-closure array from typical c/a domains in PbTiO/SrTiO bilayers is directly observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!