Kagome lattice materials have attracted growing interest for their topological properties and flatbands in electronic structure. We present a comprehensive study on the anisotropy and out-of-plane electric transport in Fe_{3}Sn_{2}, a metal with bilayer of Fe kagome planes and with massive Dirac fermions that features high-temperature noncollinear magnetic structure and magnetic skyrmions. For the electrical current path along the c axis, in micron-size crystals, we found a large topological Hall effect over a wide temperature range down to spin-glass state. Twofold and fourfold angular magnetoresistance are observed for different magnetic phases, reflecting the competition of magnetic interactions and magnetic anisotropy in kagome lattice that preserve robust topological Hall effect for inter-kagome bilayer currents. This provides new insight into the anisotropy in Fe_{3}Sn_{2}, of interest in skyrmionic-bubble application-related micron-size devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.236601 | DOI Listing |
Phys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
Non-Hermitian topological photonics plays a key role in bridging topological matter with gain and loss engineering in optics. Here we report the experimental observation of the break of chiral currents in a Hall ladder from the non-Hermiticity by constructing synthetic frequency dimension in two rings, where currents on both legs of the ladder co-propagate in the same direction. The origin of such phenomena is resulted from the interplay between the effective magnetic flux and the on-site gain and loss.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.
β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
Nat Commun
January 2025
Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Topological phases are robust against weak perturbations, but break down when disorder becomes sufficiently strong. However, moderate disorder can also induce topologically nontrivial phases. Thouless pumping, as a (1+1)D counterpart of the integer quantum Hall effect, is one of the simplest manifestations of topology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!