Considering the example of superconducting circuits, we show how Floquet engineering can be combined with reservoir engineering for the controlled preparation of target states. Floquet engineering refers to the control of a quantum system by means of time-periodic forcing, typically in the high-frequency regime, so that the system is governed effectively by a time-independent Floquet Hamiltonian with novel interesting properties. Reservoir engineering, on the other hand, can be achieved in superconducting circuits by coupling a system of artificial atoms (or qubits) dispersively to pumped leaky cavities, so that the induced dissipation guides the system into a desired target state. It is not obvious that the two approaches can be combined, since reaching the dispersive regime, in which system and cavities exchange excitations only virtually, can be spoiled by driving-induced resonant transitions. However, working in the extended Floquet space and treating both system-cavity coupling as well as driving-induced excitation processes on the same footing perturbatively, we identify regimes, where reservoir engineering of targeted Floquet states is possible and accurately described by an effective time-independent master equation. We successfully benchmark our approach for the preparation of the ground state in a system of interacting bosons subjected to Floquet-engineered magnetic fields in different lattice geometries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.233601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!