We address a new setting where the second law is under question: thermalizations in a quantum superposition of causal orders, enacted by the so-called quantum switch. This superposition has been shown to be associated with an increase in the communication capacity of the channels, yielding an apparent violation of the data-processing inequality and a possibility to separate hot from cold. We analyze the thermodynamics of this information capacity increasing process. We show how the information capacity increase is compatible with thermodynamics. We show that there may indeed be an information capacity increase for consecutive thermalizations obeying the first and second laws of thermodynamics if these are placed in an indefinite order and moreover that only a significantly bounded increase is possible. The increase comes at the cost of consuming a thermodynamic resource, the free energy of coherence associated with the switch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.230604 | DOI Listing |
Nat Mater
January 2025
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.
View Article and Find Full Text PDFEPJ Quantum Technol
January 2025
Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1 Ontario Canada.
Satellite-based quantum communication channels are important for ultra-long distances. Given the short duration of a satellite pass, it can be challenging to efficiently connect multiple users of a city-wide network while the satellite is passing over that area. We propose a network with dual-functionality: during a brief satellite pass, the ground network is configured as a multipoint-to-point topology where all ground nodes establish entanglement with a satellite receiver.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnO is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!