With increasing computing demands, serial processing in von Neumann architectures built with zeroth-order complexity digital circuits is saturating in computational capacity and power, entailing research into alternative paradigms. Brain-inspired systems built with memristors are attractive owing to their large parallelism, low energy consumption, and high error tolerance. However, most demonstrations have thus far only mimicked primitive lower-order biological complexities using devices with first-order dynamics. Memristors with higher-order complexities are predicted to solve problems that would otherwise require increasingly elaborate circuits, but no generic design rules exist. Here, we present second-order dynamics in halide perovskite memristive diodes (memdiodes) that enable Bienenstock-Cooper-Munro learning rules capturing both timing- and rate-based plasticity. A triplet spike timing-dependent plasticity scheme exploiting ion migration, back diffusion, and modulable Schottky barriers establishes general design rules for realizing higher-order memristors. This higher order enables complex binocular orientation selectivity in neural networks exploiting the intrinsic physics of the devices, without the need for complicated circuitry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788778 | PMC |
http://dx.doi.org/10.1126/sciadv.ade0072 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.
Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China.
Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Photodetectors based on lead halide perovskites often show excellent performance but poor stability. Herein, we demonstrate a photodetector based on MAPbBr single crystals passivated with an ultrathin layer of PbSO, which shows superior detectivity and on/off ratios compared to the control device due to the combined effect of lower surface traps, reduced recombination and low dark current. In addition, the device retained ∼56% of its initial * with an impressive on/off ratio of ∼801 after one year compared to ∼22% of * and an on/off ratio of ∼6 of the control device.
View Article and Find Full Text PDFACS Nano
January 2025
College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China.
The precise patterning of elastic semiconductors holds encouraging prospects for unlocking functionalities and broadening the scope of optoelectronic applications. Here, perovskite films with notable elasticity capable of stretching over 250% are successfully fabricated by using a continuous-wave (CW) laser-patterning technique. Under CW laser irradiation, perovskite nanoparticles (NPs) undergo meticulous crystallization within the thermoplastic polyurethane (TPU) matrix, which yields the capability of an unparalleled stretch behavior.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!