Recently reported winged microelectronic systems offer passive flight mechanisms as a dispersal strategy for purposes in environmental monitoring, population surveillance, pathogen tracking, and other applications. Initial studies indicate potential for technologies of this type, but advances in structural and responsive materials and in aerodynamically optimized geometries are necessary to improve the functionality and expand the modes of operation. Here, we introduce environmentally degradable materials as the basis of 3D fliers that allow remote, colorimetric assessments of multiple environmental parameters-pH, heavy metal concentrations, and ultraviolet exposure, along with humidity levels and temperature. Experimental and theoretical investigations of the aerodynamics of these systems reveal design considerations that include not only the geometries of the structures but also their mass distributions across a range of bioinspired designs. Preliminary field studies that rely on drones for deployment and for remote colorimetric analysis by machine learning interpretation of digital images illustrate scenarios for practical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788784PMC
http://dx.doi.org/10.1126/sciadv.ade3201DOI Listing

Publication Analysis

Top Keywords

environmental monitoring
8
remote colorimetric
8
biodegradable three-dimensional
4
three-dimensional colorimetric
4
colorimetric fliers
4
fliers environmental
4
monitoring reported
4
reported winged
4
winged microelectronic
4
microelectronic systems
4

Similar Publications

Riverine physical and chemical characteristics are influencing ecosystem integrity while shaping and impacting species richness and diversity. Changes in these factors could potentially influence community structuring through competition, predation and localised species extinctions. In this study, eight sampling sites over multiple seasons were assessed along the streams draining the City of Nelspruit, South Africa, to examine river health based on water and sediment quality, while using macroinvertebrates as bioindicators for pollution.

View Article and Find Full Text PDF

Revealing the status of forests is important for sustainable forest management. The basis of the concept lies in meeting the needs of future generations and today's generations in the management of forests. The use of remote-sensing (RS) technologies and geographic information systems (GIS) techniques in revealing the current forest structure and in long-term planning of forest areas with multipurpose planning techniques is increasing day by day.

View Article and Find Full Text PDF

Human Aichi virus 1 (AiV-1) is a water- and food-borne infection-associated picornavirus that causes gastroenteritis in humans. Recent studies on environmental waters showed a high frequency and abundance of AiV-1, suggesting that it might be an appropriate indicator of fecal contamination. We screened 450 surface and drinking water samples from a Tunisian drinking water treatment plant (DWTP) and the Sidi Salem dam for AiV-1 by real time reverse transcriptase PCR (RT-qPCR).

View Article and Find Full Text PDF

Surveillance of antimicrobial resistance using isothermal amplification: a review.

Chem Commun (Camb)

January 2025

State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.

The monitoring of antibiotic resistance genes (ARGs) is crucial for understanding the level of antimicrobial resistance and the associated health burden, which in turn is essential for the control and prevention of antimicrobial resistance (AMR). Isothermal amplification, an emerging molecular biology technology, has been widely used for drug resistance detection. Furthermore, its compatibility with a range of technologies enables high-specificity, high-throughput, and portable and integrated detection in drug resistance, particularly in resource-limited areas.

View Article and Find Full Text PDF

Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!