Stretchable hydrogel-based strain sensors suffer from limited sensitivity, which urgently requires further breakthroughs for precise and stable human-computer interaction. Here, an efficient microstructural engineering strategy is proposed to significantly enhance the sensitivity of hydrogel-based strain sensors by sandwiching an emulsion-polymerized polyacrylamide organohydrogel microsphere membrane between two Ecoflex films, which are accompanied by crack generation and propagation effects upon stretching. Consequently, the as-developed strain sensor exhibits ultrahigh sensitivity (gauge factor (GF) of 1275), wide detection range (100% strain), low hysteresis, ultralow detection limit (0.05% strain), good fatigue resistance, and low fabrication cost. In addition, the sensor features good water, dehydration, and frost resistance, enabling real-time strain monitoring in various complex conditions due to the encapsulation of Ecoflex film and the addition of glycerol and KCl. Through further structural manipulation, the device achieves superior response to tiny strains, with a GF value of 98.3 in the strain range of less than 1.5%. Owing to the high strain sensing performance, the sensor is able to detect various human activities from swallowing to finger bending even under water. On this basis, a wireless sensing system with apnea warning and single-channel gesture recognition capabilities is successfully demonstrated, demonstrating its great promise as wearable electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951583 | PMC |
http://dx.doi.org/10.1002/advs.202205632 | DOI Listing |
Soft Robot
January 2025
Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Temporomandibular disorders (TMD) intelligent diagnosis promises to elevate clinical efficiency and facilitate timely TMD management for patients. However, development of TMD intelligent diagnostic tools with high accuracy and sensitivity presents challenges, particularly in sensing minute deformations and ensuring rapid self-recovery. Here we report a biocompatible hydrogel electronic sensor with instantaneous self-recovery (within 2.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan. Electronic address:
Background: Monitoring nitrate and nitrite levels in water is vital for protecting human health, aquatic ecosystems, and regulatory compliance. However, traditional detection methods often involve environmentally harmful chemicals. This study introduces a sustainable alternative by leveraging metabolically engineered E.
View Article and Find Full Text PDFMater Horiz
January 2025
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.
Conductive hydrogels with stable sensing performance are highly required in soft electronic devices. However, these hydrogels tend to solidify and experience structural damage at sub-zero temperatures, leading to material breakdown and device malfunction. The main challenge lies in effectively designing the micro/nano-structure to enhance mechanical properties and stable strain sensing while preventing freezing in hydrogels.
View Article and Find Full Text PDFBiotechnol J
January 2025
Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
Salmonella is a common foodborne zoonotic pathogen that poses a great threat to human health and breeding industry. The rapid detection of Salmonella is necessary for early prevention and control. In this study, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Salmonella was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!