An automatic multi-plug filtration cleanup (m-PFC) tip-filtration method was developed to reduce the manual operation workload in sample preparation. In this work, m-PFC was based on multi-walled carbon nanotubes mixed with primary secondary amines and anhydrous magnesium sulfate (MgSO4) in a packed column for analysis of pesticide residues followed by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Method validation was performed on 22 pesticide residues in carrot, spinach and leek, at spiked levels of 5, 10 and 50 μg/kg, respectively. The average recoveries were between 70.1 and 119.5% with associated relative standard deviations <20% (n = 6) indicating satisfactory accuracy and repeatability. Matrix-matched calibration curves were performed with the correlation coefficients (R2) higher than 0.9903 within a linearity range of 5-100 ng/mL. The limits of quantification were 5 μg/kg for all the pesticides in carrot, spinach and leek matrices. The developed method was successfully used to determine pesticide residues in market samples.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chromsci/bmac104DOI Listing

Publication Analysis

Top Keywords

pesticide residues
12
automatic multi-plug
8
multi-plug filtration
8
filtration cleanup
8
ultra-performance liquid
8
mass spectrometry
8
cleanup tip-filtration
4
tip-filtration ultra-performance
4
liquid chromatography/tandem
4
chromatography/tandem mass
4

Similar Publications

The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.

View Article and Find Full Text PDF

Riverbank filtration is a cost-effective and efficient method for drinking water production, using the natural filtration capacity of the river gravelbed. Removal efficiency for organic micropollutants (OMP) in field studies is generally calculated by comparing the concentrations measured in surface water and in the wells either on the same day or with a shift of fixed time interval, neither of which can account for the variability of surface water quality and travel time in the aquifer. The present study proposes a novel method based on travel time distribution determined by a numerical transport model with a hypothesis that it will provide more reliable estimate for OMP removal.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy.

View Article and Find Full Text PDF

The bioaccumulation of pesticides in honeybee products (HBPs) should be studied for a number of reasons. The presence of pesticides in HBPs can provide new data on the risk related to the use of pesticides and their role in bee colony losses. Moreover, the degree of contamination of HBPs can lower their quality, weaken their beneficial properties, and, in consequence, may endanger human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!