Neuroimaging evidence for the direct role of auditory scene analysis in object perception.

Cereb Cortex

Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 8701 W Watertown Plank Rd, Milwaukee, WI 53233, United States.

Published: May 2023

Auditory Scene Analysis (ASA) refers to the grouping of acoustic signals into auditory objects. Previously, we have shown that perceived musicality of auditory sequences varies with high-level organizational features. Here, we explore the neural mechanisms mediating ASA and auditory object perception. Participants performed musicality judgments on randomly generated pure-tone sequences and manipulated versions of each sequence containing low-level changes (amplitude; timbre). Low-level manipulations affected auditory object perception as evidenced by changes in musicality ratings. fMRI was used to measure neural activation to sequences rated most and least musical, and the altered versions of each sequence. Next, we generated two partially overlapping networks: (i) a music processing network (music localizer) and (ii) an ASA network (base sequences vs. ASA manipulated sequences). Using Representational Similarity Analysis, we correlated the functional profiles of each ROI to a model generated from behavioral musicality ratings as well as models corresponding to low-level feature processing and music perception. Within overlapping regions, areas near primary auditory cortex correlated with low-level ASA models, whereas right IPS was correlated with musicality ratings. Shared neural mechanisms that correlate with behavior and underlie both ASA and music perception suggests that low-level features of auditory stimuli play a role in auditory object perception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183742PMC
http://dx.doi.org/10.1093/cercor/bhac501DOI Listing

Publication Analysis

Top Keywords

object perception
16
auditory object
12
musicality ratings
12
auditory
9
role auditory
8
auditory scene
8
scene analysis
8
neural mechanisms
8
versions sequence
8
music perception
8

Similar Publications

Feature-selective adaptation of numerosity perception.

Proc Biol Sci

January 2025

Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.

Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity.

View Article and Find Full Text PDF

In the field of image processing, optical neural networks offer advantages such as high speed, high throughput, and low energy consumption. However, most existing coherent optical neural networks (CONN) rely on coherent light sources to establish transmission models. The use of laser inputs and electro-optic modulation devices at the front end of these neural networks diminishes their computational capability and energy efficiency, thereby limiting their practical applications in object detection tasks.

View Article and Find Full Text PDF

Flower colour contrast, 'spectral purity' and a red herring.

Plant Biol (Stuttg)

January 2025

Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.

Nature offers a bewildering diversity of flower colours. Understanding the ecology and evolution of this fantastic floral diversity requires knowledge about the visual systems of their natural observers, such as insect pollinators. The key question is how flower colour and pattern can be measured and represented to characterise the signals that are relevant to pollinators.

View Article and Find Full Text PDF

Predicting the location of moving objects in noisy environments is essential to everyday behavior, like when participating in traffic. Although many objects provide multisensory information, it remains unknown how humans use multisensory information to localize moving objects, and how this depends on expected sensory interference (e.g.

View Article and Find Full Text PDF

The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!