The Cordella pulmonary artery (PA) pressure sensor (Endotronix, Inc) is an investigational, wireless, microelectromechanical system (MEMS) sensor that allows remote monitoring of PA pressures. Understanding the implantation procedure and technical nuances is key to safe, efficient, and effective implantation to allow for successful use of the PA pressure sensor over the long term. We provide a summary of the implantation procedure and present a series of cases detailing the Cordella PA pressure sensor implantation in the United States and Europe.

Download full-text PDF

Source
http://dx.doi.org/10.25270/jic/22.00209DOI Listing

Publication Analysis

Top Keywords

pressure sensor
16
cordella pulmonary
8
pulmonary artery
8
artery pressure
8
implantation procedure
8
sensor
5
procedural guide
4
guide implanting
4
implanting cordella
4
pressure
4

Similar Publications

Whispering-gallery mode sensor based on coupling of tapered two-mode fiber and glass capillary.

Rev Sci Instrum

January 2025

Hubei Key Laboratory of Optoelectronic Conversion Materials and Devices, Hubei Engineering Research Center for Micronano Optoelectronic Devices and Integration, College of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China.

A novel whispering-gallery mode (WGM) sensor is fabricated by coupling a tapered two-mode fiber and a glass capillary. By utilizing the relatively large orifice of glass capillaries, polydimethylsiloxane (PDMS) and magnetic fluid are directly injected into two WGM structured glass capillaries, respectively, allowing these materials to substantially interact with the light field of the WGM, thereby achieving temperature, pressure, and magnetic field measurements. λ1 and λ2 are the two resonant peak wavelengths of the WGM after injecting PDMS into a glass capillary.

View Article and Find Full Text PDF

Advanced Morphological and Material Engineering for High-Performance Interfacial Iontronic Pressure Sensors.

Adv Sci (Weinh)

January 2025

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.

High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time.

View Article and Find Full Text PDF

As Water Sensitive Urban Design (WSUD) is a key strategy in integrated urban water management worldwide, there is a need for robust monitoring of WSUD systems. Being economical and flexible for operation and communication, low-cost sensor systems show great potential to mainstream digital water management. Yet, such systems are insufficiently tested, casting doubt on the reliability of their measurements.

View Article and Find Full Text PDF

Flexible Eyelid Pressure and Motion Dual-Mode Sensor Using Electric Breakdown-Induced Piezoresistivity and Electrical Potential Sensing.

ACS Appl Mater Interfaces

January 2025

Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China.

Multiple ocular surface disorders are associated with the mechanical properties of the interface between the eyelid and cornea. Determining eyelid pressure is vital for diagnosing and preventing these disorders. However, current measurements rely on flat piezoresistive pressure sensor arrays that lack eye-motion sensing capabilities, resulting in discomfort and measurement inaccuracies.

View Article and Find Full Text PDF

New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!