The metabolic and inflammatory processes that are implicated in the development of cardiovascular diseases are under control of the biological clock. While skeletal muscle function exhibits circadian rhythms, it is unclear to what extent the beneficial health effects of exercise are restricted to unique time windows. We aimed to study whether the timing of exercise training differentially modulates the development of atherosclerosis and elucidate underlying mechanisms. We endurance-trained atherosclerosis-prone female APOE*3-Leiden.CETP mice fed a Western-type diet, a well-established human-like model for cardiometabolic diseases, for 1 h five times a week for 4 weeks either in their early or in their late active phase on a treadmill. We monitored metabolic parameters, the development of atherosclerotic lesions in the aortic root and assessed the composition of the gut microbiota. Late, but not early, exercise training reduced fat mass by 19% and the size of early-stage atherosclerotic lesions by as much as 29% compared to sedentary animals. No correlation between cholesterol exposure and lesion size was evident, as no differences in plasma lipid levels were observed, but circulating levels of the pro-inflammatory markers ICAM-1 and VCAM-1 were reduced with late exercise. Strikingly, we observed a time-of-day-dependent effect of exercise training on the composition of the gut microbiota as only late training increased the abundance of gut bacteria producing short-chain fatty acids with proposed anti-inflammatory properties. Together, these findings indicate that timing is a critical factor to the beneficial anti-atherosclerotic effects of exercise with a great potential to further optimize training recommendations for patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202201304R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!