Naringin, a natural product, can be used as a therapeutic agent due to its low systemic toxicity and negligible adverse effect. However, due to its hydrophobic nature and thereby low solubility, high-dose treatment is required when used for human therapy. Herein, we demonstrate the employment of a metal-organic framework (MOF) as a nontoxic loading carrier to encapsulate naringin, and the afforded nairngin@MOF composite can serve as a multifunctional bioplatform capable of treating Gram-positive bacteria and certain cancers by slowly and progressively releasing the encapsulated naringin as well as improving and modulating immune system functions through synergy between naringin and the MOF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c19904 | DOI Listing |
Chem Commun (Camb)
January 2024
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
Appearing as a new class of functional organic materials, covalent organic frameworks (COFs) have aroused a huge wave of interest in versatile fields ever since they were first proposed in 2005. Thanks to but not limited to their ultralight weights, high surface areas, ordered channels, variable functional groups and well-defined crystal structures, the applications of COF-based biomaterials in the fields of drug loading and delivery, photodynamic therapy, photothermal therapy, bioimaging, are comprehensively summarized and introduced. The existing challenges and future prospects for this emerging but hot research direction are also discussed.
View Article and Find Full Text PDFDrug Discov Today
January 2024
NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology (UIRMI) (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain. Electronic address:
Breast cancer is the most common and malignant tumor among women. Chitosan (CS)-based nanoparticles have been introduced into breast cancer therapy as a way to increase the targeted delivery of drugs and genes to the tumor site. CS nanostructures suppress tumorigenesis by enhancing both the targeted delivery of cargo (drug and gene) and its accumulation in tumor cells.
View Article and Find Full Text PDFSmall
January 2024
Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore.
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H.
View Article and Find Full Text PDFTalanta
January 2024
Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain. Electronic address:
Detecting overexpression of cancer biomarkers is an excellent tool for diagnostic/prognostic and follow-up of patients with cancer or their response to treatment. This work illustrates the relevance of interrogating the levels of T-cell immunoglobulin and mucin domain 1 (TIM-1) protein as a diagnostic/prognostic biomarker of high-prevalence breast and lung cancers by using an amperometric disposable magnetic microparticles-assisted immunoplatform. The developed method integrates the inherent advantages of carboxylic acid-functionalized magnetic beads (HOOC-MBs) as pre-concentrator support and the amperometric transduction at screen-printed carbon electrodes (SPCEs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States.
Naringin, a natural product, can be used as a therapeutic agent due to its low systemic toxicity and negligible adverse effect. However, due to its hydrophobic nature and thereby low solubility, high-dose treatment is required when used for human therapy. Herein, we demonstrate the employment of a metal-organic framework (MOF) as a nontoxic loading carrier to encapsulate naringin, and the afforded nairngin@MOF composite can serve as a multifunctional bioplatform capable of treating Gram-positive bacteria and certain cancers by slowly and progressively releasing the encapsulated naringin as well as improving and modulating immune system functions through synergy between naringin and the MOF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!