Inhibition of Ceramide Synthesis Attenuates Chronic Ethanol Induced Cardiotoxicity by Restoring Lysosomal Function and Reducing Necroptosis.

Alcohol Alcohol

Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China.

Published: March 2023

Aims: Chronic alcohol misuse could cause alcoholic cardiomyopathy (ACM), and the specific mechanisms remained largely unknown. In this study, we aimed to explore the effects of endogenous ceramides on chronic ethanol-induced myocardial injury or cell loss (e.g. necroptosis).

Methods: We established chronic alcohol intoxication models in vivo (male C57BL/6 mice) and in vitro (H9c2 cardiomyoblasts). The ceramide profiles were analyzed in mice myocardium and cultured cardiomyocytes. Further research on the role of ceramides and underlying signaling pathways was carried out in H9c2 cells.

Results And Conclusions: The ceramide profiles analysis revealed increased long and very long-chain ceramides in alcoholic myocardium and ethanol-treated cardiomyocytes. Next, we proved that endogenous ceramide inhibition could reduce necroptosis and alleviate cardiomyocytes injury as suggested by decreased levels of p-RIPK1, p-RIPK3 and p-MLKL proteins and cardiac injury factors expression. Furthermore, we found that lysosomal dysfunction also contributed to alcohol-induced cardiac damage and inhibiting ceramide biosynthesis could repaired this to some extent. Cells studies with exogenous C6 ceramide confirmed the pleotropic roles of ceramide in myocardial damage by causing both necroptosis and lysosomal dysfunction. Finally, our data suggested that lysosomal dysfunction could sensitize cardiomyocytes to induction of necroptosis due to the restriction on degradation of RIPK1/RIPK3 proteins. In conclusion, chronic ethanol treatment boosted myocardial ceramide synthesis in animal hearts and cultured cardiomyocytes. Moreover, ceramides exerted crucial roles in the intrinsic signaling pathways of alcohol-induced cardiotoxicity. Targeting ceramide biosynthesis to simultaneously attenuate necroptosis and lysosomal dysfunction might be a novel strategy for preventing alcoholic cardiotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/alcalc/agac067DOI Listing

Publication Analysis

Top Keywords

lysosomal dysfunction
16
ceramide synthesis
8
chronic ethanol
8
chronic alcohol
8
ceramide
8
ceramide profiles
8
cultured cardiomyocytes
8
signaling pathways
8
ceramide biosynthesis
8
necroptosis lysosomal
8

Similar Publications

Organelle-Targeting Nanoparticles.

Adv Sci (Weinh)

January 2025

Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.

Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.

View Article and Find Full Text PDF

The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.

View Article and Find Full Text PDF

Microenvironment-induced programmable nanotherapeutics restore mitochondrial dysfunction for the amelioration of non-alcoholic fatty liver disease.

Acta Biomater

January 2025

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy.

View Article and Find Full Text PDF

TFEB activator protects against ethanol toxicity-induced cardiac injury by restoring mitophagy and autophagic flux.

Biochim Biophys Acta Mol Basis Dis

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.

View Article and Find Full Text PDF

Anderson-Fabry disease (AFD) is a X-linked lysosomal storage disorder that can result in cardiac dysfunction including left ventricular hypertrophy (LVH) and conduction abnormalities (Frontiers in cardiovascular medicine vol. 10) [1]. The manifestations of AFD in women may be isolated to one organ and occur late in life due to the random inactivation of the X chromosome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!