Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Palladium-catalysed ligand-controlled 1,-palladium migration of silicon-tethering substrates provides a regiodivergent synthesis strategy for constructing silicon-bridged π-conjugated compounds possessing a 6,6-fused or a 5,7-fused scaffold. Density functional theory (DFT) calculations were carried out to elucidate the detailed mechanism of this 1,-palladium migration involving - or -carbopalladation. The computational results suggest that alkyne insertion is the regioselectivity-determining step. Upon catalysis without the BINAP ligand, the 1,2-insertion of an alkyne into the Pd-aryl bond leads to the formation of 6,6-fused benzophenanthrosiline, which is more favorable than the 2,1-insertion of alkyne by 4.2 kcal mol. The selective formation of 5,7-fused benzofluorenosilepins the 2,1-alkyne insertion is facilitated by the BINAP ligand. The 1,2-alkyne insertion with the BINAP ligand is disfavoured due to the steric repulsion between the phenyl group of the substrate and the naphthalene group of the BINAP ligand. The 2,1-alkyne insertion with the BINAP ligand orients the ligand away from the phenyl group of the substrate, which can avoid steric repulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03767j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!