Flexible three-dimensional diacetylene functionalized covalent organic frameworks for efficient iodine capture.

Dalton Trans

Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.

Published: January 2023

The construction of functionalized covalent organic frameworks (COFs) is of great significance for broadening their potential applications, but is yet challenging to achieve, especially for three-dimensional (3D) COFs, because the connection of the building organic skeleton must strictly follow the pre-designed topology. Here we present the synthesis of two diamondyne-like 3D COFs (CPOF-2 and CPOF-3) functionalized with acetylene (-CC-) and diacetylene (-CC-CC-), respectively. The obtained COFs show a high crystallinity, permanent porosity, and chemical stability. Furthermore, CPOF-3 exhibited an extremely high volatile iodine uptake (as high as 5.87 g g), much higher than that of most reported COF-based adsorbents for iodine capture. Therefore, this study provides a new design principle to obtain high-performance iodine loading porous materials to solve the environmental pollution problem caused by radioactive iodine in the waste of the nuclear industry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt03362cDOI Listing

Publication Analysis

Top Keywords

functionalized covalent
8
covalent organic
8
organic frameworks
8
iodine capture
8
iodine
5
flexible three-dimensional
4
three-dimensional diacetylene
4
diacetylene functionalized
4
frameworks efficient
4
efficient iodine
4

Similar Publications

Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.

View Article and Find Full Text PDF

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.

View Article and Find Full Text PDF

The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.

View Article and Find Full Text PDF

3D N-heterocyclic covalent organic frameworks for urea photosynthesis from NH and CO.

Nat Commun

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.

Artificial photosynthesis of urea from NH and CO seems to remain still essentially unexplored. Herein, three isomorphic three-dimensional covalent organic frameworks with twofold interpenetrated ffc topology are functionalized by benzene, pyrazine, and tetrazine active moieties, respectively. A series of experiment results disclose the gradually enhanced conductivity, light-harvesting capacity, photogenerated carrier separation efficiency, and co-adsorption capacity towards NH and CO in the order of benzene-, pyrazine-, and tetrazine-containing framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!