The emergence of antimicrobial resistant (AMR) bacteria has been identified as one of the principal public health threats of the 21st century. The World Health Organization (WHO) has long recognized the threat of AMR bacteria and highlights environmental surveillance as a key step in understanding and combating the global rise of antimicrobial resistance. Here, we modified and validated an IDEXX defined-substrate assay commonly used for recreational water quality monitoring of to enumerate cefotaxime resistant in environmental reservoirs. We then applied this method to understand AMR trends in multiple environmental matrices over time. This modified IDEXX assay performed highly similarly to two widely accepted plating methods (TBX and MacConkey agar) for enumerating AMR bacteria in pure culture samples and environmental matrices, indicating it is a valid method for enumerating AMR in the environment. We detected AMR in urban surface water (63%, 15/24 samples), surface soil (35%, 8/23), and waterfowl feces (43%, 3/7). Sampling around a heavy rain event also revealed that concentrations of AMR and total co-vary over time in both surface water and surface soil. This novel method can reliably be performed outside of a laboratory setting and has very low equipment requirements, meaning it has tremendous potential to bolster global monitoring efforts, particularly in resource-restricted and highly rural settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2em00189f | DOI Listing |
Small Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFFoods
December 2024
Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.
Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands.
Background: The Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) networks 'Seq4AMR' and 'B2B2B AMR Dx' were established to promote collaboration between microbial whole genome sequencing (WGS) and antimicrobial resistance (AMR) stakeholders. A key topic discussed was the frequent variability in results obtained between different microbial WGS-related AMR gene prediction workflows. Further, comparative benchmarking studies are difficult to perform due to differences in AMR gene prediction accuracy and a lack of agreement in the naming of AMR genes (semantic conformity) for the results obtained.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to qualitative screening test using Nile-red dye.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!